Academia.eduAcademia.edu

Outline

Far-Infrared Heterodyne Array Receivers

2019, Bulletin of the American Astronomical Society

Abstract

Heterodyne spectroscopic instruments are currently the only practical technical approach for obtaining velocity-resolved spectra in the far infrared. Moreover, to produce the large-scale maps of molecular clouds envisioned for future missions, large-format (100’s pixels) array receivers are required, which is the focus of this whitepaper.

References (63)

  1. S. Molinari, et al., 2010, "Clouds filaments, and protostars: The Herschel Hi-GAL Milky Way," Astron. & Astrohys. 518, L100.
  2. Ph. André, et al., 2010, "From filamentary clouds to prestellar cores to the stellar IMF: Initial highlights from the Herschel Gould Belt Survey," Astron. & Astrophys. 518, L102
  3. A. Menshchikov, et al., 2010, "Filamentary structures and compact objects in the Aquila and Polaris clouds observed by Herschel." Astron. & Astrophys. 518, L103.
  4. V. Konyves et al., 2010, "The Aquila prestellar core population revealed Herschel," Astron. & Astrophys. 518, L106
  5. P. Padoan, M. Juvela, A.A. Goodman, A. Nordlund, 2001, "The turbulent shock origin of proto-stellar cores," Astrophys. J. 553, 227
  6. T. Nagai, S.-I. Inutsuka, & S.M. Miyama, 1998, "An origin of filamentary structure in molecular clouds," Astrophys. J. 506, 306
  7. P. Ocvirk, C. Pichon & R. Teyssier, 2008, "Bimodal gas accretion in the Horison- MareNostrum galaxy formation simulation," Mon. Not. R. Astron. Soc. 390, 1326
  8. F. Nakamura & Z.-Y. Li, "Magnetically regulated star formation in three dimensions: the case of the Taurus molecular cloud complex," 2008, Astrophys. J. 687, 354
  9. C. Battersby et al. 2018, "The Origins Space Telescope," Nature Astronomy, Volume 2, p. 596-599
  10. M. Gerin, M. Rueaud, J.R. Goicoechea et al. 2015 "[CII] absorption and emission in the diffuse interstellar medium across the Galactic plane", Astronomy & Astrophysics, 573, A30
  11. E. Keto, P. Caselli, & J. Rawlings 2015, "The dynamics of collapsing cores and star formation", Mon. Not. R. Astron. Soc, 446, 3731
  12. D. Lis, D. Boclelee-Morvan, R. Güsten et al., "Terrestrial deuterium-to-hydrogen ratio in xater in hyperactive comets" , 2019, Astronomy & Astrophysics, 625, L5
  13. Hedden, A., Tong, E., Blundell, R., Papa, D. C., Smith, M., Honingh, C. E., Jacobs, K., Pütz, P., Wulff, S., Chang, S., Hwang, Y., "Upgrading the SMA 600 GHz Receivers," Proc. ISSTT, 428-432 (2010)
  14. A. M. Baryshev et al. "The ALMA Band 9 receiver -Design, construction, characterization, and first light," A&A 577, A129-(2015) DOI: 10.1051/0004-6361/201425529
  15. C. Edward Tong, Lingzhen Zeng, Paul Grimes, Wei-Chun Lu, Tse-Jun Chen, Yen-Pin Chang and Ming-Jye Wang, "Development of SIS Receivers with Ultra-wide Instantaneous Bandwidth for wSMA", 29th IEEE International Symposium on Space THz Technology (ISSTT2018), Pasadena, CA, USA, March 26-28, 2018
  16. R. Blundell et al., "A 1.3 mm Superconductor Insulator Superconductor Mixer Receiver with 40 GHz Wide Instantaneous Bandwidth, "30th IEEE International Symposium on Space THz Technology (ISSTT2018), Gotheborg, Sweden, April 15 -17, 2019
  17. Zhou, K., Miao, W., Shi, S. C., Lefevre, R., Delorme, Y., "Noise temperature and IF bandwidth of a 1.4 THzsuperconduction HEB mixer," Proc. URSI Asia-Pacific Radio Science Conference, 2010 -2012 (2016).
  18. Hjenius, M., Yan, Z. Q., Gao, J. R., Goltsman, G., "Optimized Sensitivity of NbN Hot Electron Bolometer Mixers by Annealing," IEEE Transactions on Applied Superconductivity 17(2), 399 -402 (July 2007).
  19. Krause, S., Meledin, D., Desmaris, V., Pavolotsky, A., Rashid, H., Belitksy, V., "Noise and IF Gain Bandwidth of a Balanced Waveguide NbN/GaN Hot Electron Bolometer Mixer Operating at 1.3 THz," IEEE Transactions on Terahertz Science and Technology, vol 8, Issue 3, (2018).
  20. E. Novoselov and S. Cherednichenko, "Gain and Noise in THz MgB2 Hot-Electron Bolometer Mixers with a 30K Critical Temperature", IEEE Transactions on Terahertz Science and Technology vol. 7 (26) s. 704-710 (Nov. 2017)
  21. D. Cunnane et al., "Characterization of MgB2 Superconducting Hot Electron Bolometers," in IEEE Transactions on Applied Superconductivity, vol. 25, no. 3, pp. 1-6, June 2015
  22. E. Novoselov and S. Cherednichenko, "Low noise terahertz MgB2 hot-electron bolometer mixers with an 11 GHz bandwidth", Appl.Phys.Lett., 110, 032601 (2017)
  23. N.Acharya, E. Novoselov, and S. Cherednichenko "Analysis of the broad IF-band performance of MgB2 HEB mixers", submitted to IEEE Transactions on Terahertz Science and Technolog, 2019
  24. Krause, et. al, IEEE TST Vol. 8, No. 3, May 2018.
  25. T. Kojima, M. Kroug, K. Uemizu, Y. Niizeki, H. Takahashi and Y. Uzawa, "Performance and Characterization of a Wide IF SIS-Mixer-Preamplifier Module Employing High-J c SIS Junctions," in IEEE Transactions on Terahertz Science and Technology, vol. 7, no. 6, pp. 694- 703, Nov. 2017. doi: 10.1109/TTHZ.2017.2758260
  26. P. Ravindran, S.-W. Chang, D. Gupta, A. Inamdar, S. Sarwana, V. Dotsenko, and J.C. Bardin, "Power-Optimized Temperature-Distributed Data Link," IEEE Transactions on Applied Superconductivity, 3(25), 2015.
  27. I. Mehdi, J. V. Siles, C. Lee and E. Schlecht, "THz Diode Technology: Status, Prospects, and Applications," in Proceedings of the IEEE, vol. 105, no. 6, pp. 990-1007, June 2017. Doi: 10.1109/JPROC.2017.2650235
  28. T. W. Crowe, J. L. Hesler, S. A. Retzloff and D. S. Kurtz, "Higher power terahertz sources based on diode multipliers," 2017 42nd International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), Cancun, 2017, pp. 1-1. Doi: 10.1109/IRMMW- THz.2017.8067091
  29. J. Treuttel et al., "A 520-620-GHz Schottky Receiver Front-End for Planetary Science and Remote Sensing With 1070 K-1500 K DSB Noise Temperature at Room Temperature," in IEEE Transactions on Terahertz Science and Technology, vol. 6, no. 1, pp. 148-155, Jan. 2016. Doi: 10.1109/TTHZ.2015.2496421
  30. J. V. Siles, C. Lee, R. Lin, G. Chattopadhyay, T. Reck, C. Jung-Kubiak, I. Mehdi, and K. Cooper, "A High-Power 105-120 GHz Broadband On-Chip Power-Combined Frequency Triple", IEEE Microwave and Wireless Components Letters, No. ,Vol. 3, pp. 157-159, Mar. 2015
  31. J. V. Siles, Choonsup Lee, Robert Lin, Goutam Chattopadhyay and Imran Mehdi, "Capability of room-temperature solid state coherent sources in the THz range" Invited Keynote Talk, Proceedings of the 39th International Conference on Infrared, Millimeter, and Terahertz Waves, Tucson, AZ, Sep. 2014.
  32. Crowe, T. W. et al., "Solid-State LO Sources for Greater than 2THz," International Symposium on Space Terahertz Technology (2011).
  33. H.-W. Hübers, T. Hagelschuer, H. Richter, M. Wienold, L. Schrottke, X. Lü, B. Röben, K. Biermann, and H. T. Grahn "Compact and efficient 4.7-THz local oscillator with a GaAs/AlAs quantum-cascade laser," 29TH IEEE International Sympopsium on Space Terahertz Technology, 26-28 March 2018
  34. H.-W. Huebers, R. Eichholz, S. G. Pavlov, H. Richter "High Resolution Terahertz Spectroscopy with Quantum Cascade Lasers," Journal of Infrared, Millimeter, and Terahertz Waves, Volume 34, Issue 5-6, pp. 325-341 (2013) DOI: 10.1007/s10762-013-9973-7
  35. B. Mirzaei "Quantum cascade lasers as super terahertz local oscillators for astronomy," Ph.D. dissertation, TU Delft, Delft, Netherlands, 2018 [Online] Available: https://repository.tudelft.nl/islandora/object/uuid:cce70e43-8730-45e2-b645- 2f8c0884b9b4?collection=research
  36. B. S. Williams, L.Y. Xu, C. A. Curwen, J. L. Reno, and T. Itoh "Terahertz quantum-cascade metasurface VECSELs," SPIE OPTO (2017) DOI: 10.1117/12.2251447
  37. N. van Marrewijk, B. Mirzaei, D. Hayton, R. J. Gao, T. Y. Kao, Q. Hu, J. L. Reno "Frequency Locking and Monitoring Based on Bi-directional Terahertz Radiation of a 3 rd -Order Distributed Feedback Quantum Cascade Laser," Journal of Infrared, Millimeter, and Terahertz Waves, Volume 36, Issue 12, pp.1210-1220 (2015) DOI: 10.1007/s10762-015- 0210-4.
  38. Richter, H., et al., "4.7-THz Local Oscillator for the GREAT Heterodyne Spectrometer on SOFIA", IEEE TST, Vol. 5, p. 539, July 2015.
  39. S. Montazeri, W. T. Wong, A. H. Coskun and J. C. Bardin, "Ultra-Low-Power Cryogenic SiGe Low-Noise Amplifiers: Theory and Demonstration," in IEEE Transactions on Microwave Theory and Techniques, vol. 64, no. 1, pp. 178-187, Jan. 2016. doi: 10.1109/TMTT.2015.2497685
  40. Montazeri, Shirin; Grimes, Paul K.; Tong, Cheuk-Yu Edward; Bardin, Joseph C. "A 220-GHz SIS Mixer Tightly Integrated With a Sub-Hundred-Microwatt SiGe IF Amplifier" ITTST, vol. 6, issue 1, pp. 133-140 (2016) doi: 10.1109/TTHZ.2015.2498041
  41. I. Lopez-Fernandez, J. D. Gallego, C. Diez, A. Barcia, "Development of Cryogenic IF Low- Noise 4-12 GHz Amplifiers for ALMA Radio Astronomy Receivers", 2006 IEEE MTT-S Int. Microwave Symp. Dig., pp.1907-1910, June 2006
  42. I. López-Fernández, J. D. Gallego, C. Diez, A. Barcia, J. M. Pintado, "Wide Band, Ultra Low Noise Cryogenic InP IF Amplifiers for the Herschel Mission Radiometers," Millimeter and Submillimeter Detectors for Astronomy, Proc. SPIE, vol. 4855, pp. 489-500, 2003
  43. Low Noise Factory, 412 63 Göteborg, SWEDEN, https://www.lownoisefactory.com/
  44. Wadefalk, Niklas, et al. "Cryogenic wide-band ultra-low-noise IF amplifiers operating at ultra-low DC power." IEEE Transactions on Microwave Theory and Techniques 51.6 (2003): 1705-1711
  45. Eom, Byeong Ho, et al. "A wideband, low-noise superconducting amplifier with high dynamic range." Nature Physics 8.8 (2012): 623
  46. Vissers, Michael R., et al. "Low-noise kinetic inductance traveling-wave amplifier using three-wave mixing." Applied physics letters 108.1 (2016): 012601
  47. Y. Zhang, Y. Kim, A. Tang, J. Kawamura, T. Reck and M. C. F. Chang, "A 2.6GS/s Spectrometer System in 65nm CMOS for Spaceborne Telescopic Sensing," 2018 IEEE International Symposium on Circuits and Systems (ISCAS), Florence, Italy, 2018, pp. 1-4. Doi: 10.1109/ISCAS.2018.8351690
  48. Kim, Y., Zhang, Y., Tang, A., Reck, T., and Chang, M-C. F, "A 1.5W 3 GHz Back-end Processor in 65 m CMOS for Sub-millimeter-wave Heterodyne Receiver Arrays," International Symposium for Space Terahertz Technology (2018).
  49. B. Klein, S Hochgürtel, I. Krämer, A. Bell, R. Güsten "High-resolution wide-band Fast- Fourier Transform spectrometers", SOFIA/GREAT special issue, A&A, 542, L3 (2012)
  50. N. Llombart, G. Chattopadhyay, A. Skalare, and I. Mehdi, `` Novel Terahertz Antenna Based on a Silicon Lens Fed by a Leaky Wave Enhanced Waveguide,'' IEEE Transactions on Antennas and Propagation, 59, June 2011, pp. 2160-2168.
  51. R. Güsten, G. Ediss, F. Gueth, K. Gundlach, et al., ``CHAMP -The Carbon Heterodyne Array of the MPIfR,'' Proceedings of SPIE, 3357, March 1998, pp. 167-177.
  52. C. Groppi, C. Walker, A. Hungerford, C. Kulesa, et al., ``Pole STAR: An 810 GHz Array Receiver for AST/RO,'' ASP Conference Proceedings, 217, 2000, pp. 48-49.
  53. C. Walker, C. Groppi, D. Golish, C. Kulesa, et al., ``PoleStar: An 810 GHz Array Receiver for AST/RO,'' Proceedings 12 th International Symposium on Space Terahertz Technology, 2001, PP. 540-551.
  54. U. U. Graf, S. Heyminck, E. A. Michael, S. Stanko, et al., ``SMART: The KOSMA Sub- Millimeter Array Receiver for Two Frequencies,'' Proc. 13 th International Symposium on Space Terahertz Technology, March 2002, pp. 143-151
  55. C. E. Groppi, C. K. Walker, C. Kulesa, D. Golish, et al., ``Desert STAR: A 7 pixel 345 GHz Heterodyne Array Receiver for the Heinrich Hertz Telescope,'' Proceedings of SPIE, 4855, 2003, pp. 330-337.
  56. C. E. Groppi, C. K. Walker, C. Kulesa, D. Golish, et al., ``First Results from Desert STAR: A 7 Pixel 345 GHz Heterodyne Array Receiver for the Heinrich Hertz Telescope,'' Proceedings of SPIE, 5498, 2004, pp. 290-298.
  57. C. Kasemann, R. Güsten, S. Heyminck, B. Klein, et al., ``CHAMP + : A Powerful Array Receiver for APEX,'' Millimeter and Submillimeter Detectors and Instrumentation for Astronomy III, Proceedings of SPIE, 6275, 2006, pp. 62750N-1-62750N-12.
  58. C. Groppi, C. Walker, C. Kulesa, D. Golish, et al., ``SuperCam: a 64 Pixel Heterodyne Imaging Spectrometer,'' Millimeter and Submillimeter Detectors and Instrumentation for Astronomy IV, Proceedings of SPIE Volume 7020, 2008, pp. 702011-1-702011-8.
  59. C. Groppi, C. Walker, C. Kulesa, D. Golish, et al., ``Test and Integration Results from SuperCam: a 64-pixel array receiver for the 350 GHz atmospheric window,'' Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy V, Proceedings of SPIE Volume 7741, 2010, pp. 77410X-1-77410X-12.
  60. J. V. Buckle, R. E. Hills, H. Smith, W. R. F. Dent, et al., ``HARP/ACIS: A Submillimetre Spectral Imaging System on the James Clerk Maxwell Telescope,'' Monthly Notices of the Royal Astronomical Society, 399, 2009, pp. 1026-1043.
  61. H. Smith, J. Buckle, R. Hills, G. Bell, et al. ``HARP: a Submillimetre Heterodyne Array Receiver Operating on the James Clerk Maxwell Telescope,'' Proc. of SPIE, 7020, 2008, pp. 70200Z-1 -70200Z-15.
  62. C. Risacher, R. Güsten, J. Stutzki, H.-W. Hübers, et al., ``First Supra-THz Heterodyne Array Receivers for Astronomy with the SOFIA Observatory,'' IEEE Transactions on Terahertz Science and Technology, 6, March 2016, pp. 199-211.
  63. C. Risacher, R. Güsten, Jürgen Stutzki, H.-W. Hübers, et al., ``The upGREAT 1.9 THz Multi-Pixel High Resolution Spectrometer for the SOFIA Observatory,'' Astronomy and Astrophysics, 9, 595, 2016, A34.