Academia.eduAcademia.edu

Outline

Numerical Radius Preserving Linear Maps

2013

https://doi.org/10.12732/IJPAM.V88I2.6

Abstract

Let A and B be unital complex Banach algebras, and ' be a unital surjective numerical radius preserving linear map from A into B. We discuss a Nagasawa type theorem for this maps and show that ' is a Jordan isomorphism, if A and B are commutative.

References (9)

  1. B. Aupetit, A Primer on Spectral Theory, Springer-Verlag, New York (1991).
  2. B. Aupetit, Spectrum-preserving linear mappings between Banach alge- bras or Jordan-Banach algebras, London Mathematical Society, 62, No. 3 (2000), 917-924, doi: 10.1112/S0024610700001514.
  3. F.F. Bonsall, J. Duncan, Complete Normed Algebras, Springer-Verlag, New York (1973).
  4. F.F. Bonsall, J. Duncan, Numerical ranges of operators on normal spaces and elements of normed algebras, London Mathemetical Society Lecture Notes Sereis 2, Cambrideg at the University Press (1971).
  5. J.B. Conway, A Course in Functional Analysis, Springer-Verlag, New York (1985).
  6. I. Kaplansky, Algebraic and analytic aspects of operator algebras, In Re- gional Conference, Series in Mathematics 1, American Mathematical So- ciety (1970).
  7. M. Mathieu, A.R. Sourour, Hereditary properties of spectral isometries, Archiv der Mathematik, 82, No.3 (2004), 222-229, doi: 10.1007/s00013- 003-0595-5.
  8. J. Murphy, C * -Algebras and Operator Theory, Academic Press, Inc, England (1990).
  9. A.R. Sourour, Invertibility preserving linear maps on L(X), Transactions of the American Mathematical Society, 348, No. 1 (1996), 13-30.