Abstract
Let A and B be unital complex Banach algebras, and ' be a unital surjective numerical radius preserving linear map from A into B. We discuss a Nagasawa type theorem for this maps and show that ' is a Jordan isomorphism, if A and B are commutative.
References (9)
- B. Aupetit, A Primer on Spectral Theory, Springer-Verlag, New York (1991).
- B. Aupetit, Spectrum-preserving linear mappings between Banach alge- bras or Jordan-Banach algebras, London Mathematical Society, 62, No. 3 (2000), 917-924, doi: 10.1112/S0024610700001514.
- F.F. Bonsall, J. Duncan, Complete Normed Algebras, Springer-Verlag, New York (1973).
- F.F. Bonsall, J. Duncan, Numerical ranges of operators on normal spaces and elements of normed algebras, London Mathemetical Society Lecture Notes Sereis 2, Cambrideg at the University Press (1971).
- J.B. Conway, A Course in Functional Analysis, Springer-Verlag, New York (1985).
- I. Kaplansky, Algebraic and analytic aspects of operator algebras, In Re- gional Conference, Series in Mathematics 1, American Mathematical So- ciety (1970).
- M. Mathieu, A.R. Sourour, Hereditary properties of spectral isometries, Archiv der Mathematik, 82, No.3 (2004), 222-229, doi: 10.1007/s00013- 003-0595-5.
- J. Murphy, C * -Algebras and Operator Theory, Academic Press, Inc, England (1990).
- A.R. Sourour, Invertibility preserving linear maps on L(X), Transactions of the American Mathematical Society, 348, No. 1 (1996), 13-30.