Plant Species Recognition Using Triangle-Distance Representation
2019, IEEE Access
https://doi.org/10.1109/ACCESS.2019.2958416Abstract
Plant species recognition using leaf images is a highly important and challenging issue in botany and pattern recognition. A center problem of this task is how to accurately extract leaf image characteristics and quickly calculate the similarity between them. This article presents a new shape description approach called triangle-distance representation (TDR) for plant leaf recognition. The TDR descriptor is represented by two matrices: a sign matrix and a triangle center distance matrix. The sign matrix is used to characterize the convex/concave property of a shape contour, while the triangle center distance matrix is used to represent the bending degree and spatial information of a shape contour. This method can effectively capture the detailed and global characteristics of a leaf shape while keeping the similarity transformations (translation, rotation, and scaling) unchanged. In addition, this method is quite compact and has low computational complexity. We tested our method on four standard plant leaf datasets, including the famous Swedish, Smithsonian, Flavia, and ImageCLEF2012 datasets. The results confirm that our approach exceeds the prior state-of-the-art shape-based plant leaf recognition approaches. An extra experiment on the MPEG-7 shape dataset further shows that our method can be applied to general shape recognition.
References (42)
- X. F. Wang, D. S. Huang, J. X. Du, H. Xu, and L. Heutte, ''Classification of plant leaf images with complicated background,'' Appl. Math. Comput., vol. 205, no. 2, pp. 916-926, 2008.
- J. S. Cope, D. Corney, J. Y. Clark, P. Remagnino, and P. Wilkin, ''Plant species identification using digital morphometrics: A review,'' Expert Syst. Appl., vol. 39, no. 8, pp. 7562-7573, 2012.
- J. Wäldchen and P. Mäder, ''Plant species identification using computer vision techniques: A systematic literature review,'' Arch. Comput. Methods Eng., vol. 25, no. 2, pp. 507-543, 2018.
- R. Hu, W. Jia, H. Ling, and D. Huang, ''Multiscale distance matrix for fast plant leaf recognition,'' IEEE Trans. Image Process., vol. 21, no. 11, pp. 4667-4672, Nov. 2012.
- Y. K. Lei, J. W. Zou, T. Dong, Z. H. You, Y. Yuan, and Y. Hu, ''Orthogonal locally discriminant spline embedding for plant leaf recognition,'' Comput. Vis. Image Understand., vol. 119, no. 2, pp. 116-126, 2014.
- J. Fan, N. Zhou, J. Peng, and L. Gao, ''Hierarchical learning of tree classifiers for large-scale plant species identification,'' IEEE Trans. Image Process., vol. 24, no. 11, pp. 4172-4184, Nov. 2015.
- C. Zhao, S. S. F. Chan, W. K. Cham, and L. M. Chu, ''Plant identifica- tion using leaf shapes-A pattern counting approach,'' Pattern Recognit., vol. 48, no. 10, pp. 3203-3215, 2015.
- C. Kalyoncu and Ö. Toygar, ''Geometric leaf classification,'' Comput. Vis. Image Understand., vol. 133, pp. 102-109, Apr. 2015.
- Y. G. Naresh and H. S. Nagendraswamy, ''Classification of medicinal plants: An approach using modified LBP with symbolic representation,'' Neurocomputing, vol. 173, pp. 1789-1797, Jan. 2016.
- C. Yang, H. Wei, and Q. Yu, ''Multiscale triangular centroid distance for shape-based plant leaf recognition,'' in Proc. Eur. Conf. Artif. Intell., 2016, pp. 269-276.
- K. Horaisová and J. Kukal, ''Leaf classification from binary image via artificial intelligence,'' Biosyst. Eng., vol. 142, pp. 83-100, Feb. 2016.
- S. Zhang, C. Zhang, Z. Wang, and W. Kong, ''Combining sparse represen- tation and singular value decomposition for plant recognition,'' Appl. Soft Comput., vol. 67, pp. 164-171, Jun. 2018.
- Y. Shao, ''Supervised global-locality preserving projection for plant leaf recognition,'' Comput. Electron. Agricult., vol. 158, pp. 102-108, Mar. 2019.
- U. P. Singh, S. S. Chouhan, S. Jain, and S. Jain, ''Multilayer convolution neural network for the classification of mango leaves infected by anthrac- nose disease,'' IEEE Access, vol. 7, pp. 43721-43729, 2019.
- P. N. Belhumeur, D. Chen, S. Feiner, D. W. Jacobs, W. J. Kress, H. Ling, I. Lopez, R. Ramamoorthi, S. Sheorey, and S. White, ''Searching the world's herbaria: A system for visual identification of plant species,'' in Proc. Eur. Conf. Comput. Vis. Comput. Vis. (ECCV), Marseille, France, Oct. 2008, pp. 116-129.
- N. Kumar, P. N. Belhumeur, A. Biswas, D. W. Jacobs, W. J. Kress, I. C. Lopez, and J. V. B. Soares, ''Leafsnap: A computer vision system for automatic plant species identification,'' in Proc. Eur. Conf. Comput. Vis., 2012, pp. 502-516.
- P. Novotný and T. Suk, ''Leaf recognition of woody species in central Europe,'' Biosyst. Eng., vol. 115, no. 4, pp. 444-452, 2013.
- S. Zhang, Y. Lei, T. Dong, and X. P. Zhang, ''Label propagation based supervised locality projection analysis for plant leaf classification,'' Pat- tern Recognit., vol. 46, no. 7, pp. 1891-1897, 2013.
- J. X. Du, C. M. Zhai, and Q. P. Wang, ''Recognition of plant leaf image based on fractal dimension features,'' Neurocomputing, vol. 116, no. 10, pp. 150-156, Sep. 2013.
- M. G. Larese, R. Namías, R. M. Craviotto, M. R. Arango, C. Gallo, and P. M. Granitto, ''Automatic classification of legumes using leaf vein image features,'' Pattern Recognit., vol. 47, no. 1, pp. 158-168, Jan. 2014.
- J. Hu, Z. Chen, M. Yang, R. Zhang, and Y. Cui, ''A multiscale fusion convolutional neural network for plant leaf recognition,'' IEEE Signal Process. Lett., vol. 25, no. 6, pp. 853-857, Jun. 2018.
- M. Turkoglu and D. Hanbay, ''Recognition of plant leaves: An approach with hybrid features produced by dividing leaf images into two and four parts,'' Appl. Math. Comput., vol. 352, pp. 1-14, Jul. 2019.
- S. G. Wu, F. S. Bao, E. Y. Xu, Y. X. Wang, Y. F. Chang, and Q. L. Xiang, ''A leaf recognition algorithm for plant classification using probabilistic neural network,'' in Proc. IEEE Int. Symp. Signal Process. Inf. Technol., Dec. 2007, pp. 11-16.
- C. Caballero and M. C. Aranda, ''Plant species identification using leaf image retrieval,'' in Proc. ACM Int. Conf. Image Video Retr., 2010, pp. 327-334.
- G. Cerutti, L. Tougne, J. Mille, A. Vacavant, and D. Coquin, ''Under- standing leaves in natural images: A model-based approach for tree species identification,'' Comput. Vis. Image Understand., vol. 117, no. 10, pp. 1482-1501, 2013.
- E. Aptoula and B. Yanikoglu, ''Morphological features for leaf based plant recognition,'' in Proc. IEEE Int. Conf. Image Process., Sep. 2013, pp. 1496-1499.
- O. J. O. Söderkvist, ''Computer vision classification of leaves from swedish trees,'' M.S. thesis, Linköping Univ., Linköping, Sweden, Sep. 2001.
- H. Ling, ''Shape classification using the inner-distance,'' IEEE Trans. Pattern Anal. Mach. Intell., vol. 29, no. 2, pp. 286-299, Feb. 2007.
- S. Belongie, J. Malik, and J. Puzicha, ''Shape matching and object recog- nition using shape contexts,'' IEEE Trans. Pattern Anal. Mach. Intell., vol. 24, no. 4, pp. 509-522, Apr. 2002.
- S. Mouine, I. Yahiaoui, and A. Verroust-Blondet, ''Advanced shape context for plant species identification using leaf image retrieval,'' in Proc. 2nd ACM Int. Conf. Multimedia Retr., 2012, pp. 1-8.
- S. Mouine, I. Yahiaoui, and A. Verroust-Blondet, ''Plant species recog- nition using spatial correlation between the leaf margin and the leaf salient points,'' in Proc. IEEE Int. Conf. Image Process., Sep. 2013, pp. 1466-1470.
- P. F. Felzenszwalb and J. D. Schwartz, ''Hierarchical matching of deformable shapes,'' in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Jun. 2007, pp. 1-8.
- D. J. Hearn, ''Shape analysis for the automated identification of plants from images of leaves,'' Taxon, vol. 58, no. 3, pp. 934-954, 2009.
- J. M. Martínez, ''MPEG-7 Overview (version 9),'' Int. Org. Standardization-Org. Int. Normalization, Geneva, Switzerland, Tech. Rep. N5525, 2003.
- H. Goëau, P. Bonnet, A. Joly, I. Yahiaoui, D. Barthélémy, B. Nozha, and J.-F. Molino, ''The ImageCLEF 2012 Plant identification Task,'' in Proc. CLEF, Rome, Italie, Sep. 2012, pp. 1-25.
- L. J. Latecki, R. Lakamper, and T. Eckhardt, ''Shape descriptors for non- rigid shapes with a single closed contour,'' in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., vol. 1, Jun. 2000, pp. 424-429.
- N. Otsu, ''A threshold selection method from gray-level histograms,'' IEEE Trans. Syst., Man, Cybern., vol. SMC-9, no. 1, pp. 62-66, Jan. 1979.
- A. Krizhevsky, I. Sutskever, and G. E. Hinton, ''Imagenet classifica- tion with deep convolutional neural networks,'' in Proc. Adv. neural Inf. Process. Syst., 2012, pp. 1097-1105.
- K. Simonyan and A. Zisserman, ''Very deep convolutional networks for large-scale image recognition,'' in Proc. Int. Conf. Learn. Represent. (ICLR), 2015, pp. 1097-1105.
- J. Wu and J. M. Rehg, ''Centrist: A visual descriptor for scene cat- egorization,'' IEEE Trans. Pattern Anal. Mach. Intell., vol. 33, no. 8, pp. 1489-1501, Aug. 2011.
- Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama, and T. Darrell, ''Caffe: Convolutional architecture for fast feature embedding,'' in Proc. 22nd ACM Int. Conf. Multimedia, 2014, pp. 675-678.
- H. Laga, S. Kurtek, A. Srivastava, and M. Golzarian, ''A Riemannian elastic metric for shape-based plant leaf classification,'' in Proc. Int. Conf. Digit. Image Comput. Techn. Appl., 2012, pp. 1-7.