Academia.eduAcademia.edu

Outline

An observational analysis of shade-related pedestrian activity

2025, Buildings & Cities

https://doi.org/10.5334/BC.574

Abstract

The impact of shade on pedestrian travel activity is examined through observation of a large sample of sidewalk users at a variety of urban sites under hot and sunny conditions. Extensive data collection in the city of Tel Aviv-Yafo, Israel, included micrometeorological measurements alongside pedestrian counts, using high-frequency imaging at 34 sites during summer daytime hours. A sample of individuals (n = 5263) identified approximately 60% as being in the shade. The actual availability of shaded space was found to be a consequential factor, as the relative quantity of shaded space correlated strongly and directly with the percentage of people using it. Thus, at sites in which the areas of shaded and unshaded space were relatively equal in quantity and functionality, the proportion of pedestrians travelling in the shade increased to over 70%. Additionally, the intensity of solar exposure-calculated as the total incidence of direct and indirect solar radiation on the body of a standing person at the time of observation-was shown to have a strong correlation with the percentage of pedestrians travelling in the shade. These findings substantiate the imperative for generous shade provision in thermally stressful pedestrian environments.

References (47)

  1. Alawadi, K., Hernandez Striedinger, V., Maghelal, P., & Khanal, A. (2021). Assessing walkability in hot arid regions: The case of downtown Abu Dhabi. Urban Design International, 0123456789. https://doi. org/10.1057/s41289-021-00150-0
  2. Aleksandrowicz, O., & Pearlmutter, D. (2023). The significance of shade provision in reducing street-level summer heat stress in a hot Mediterranean climate. Landscape and Urban Planning, 229, 104588. https://doi.org/10.1016/j.landurbplan.2022.104588
  3. Aleksandrowicz, O., Shapira, N., Levenson, M. C., Zur, S., & Pearlmutter. (2025). Guidelines for applying quantitative shade indicators in urban planning in Israel (June). Derech Tzel-The Center for Urban Forestry and Shading, Israel Green Building Council. https://www.researchgate.net/publication/392160960_ Guidelines_for_Applying_Quantitative_Shade_Indicators_in_Urban_Planning_in_Israel 412 Levenson et al. Buildings and Cities DOI: 10.5334/bc.574
  4. Aleksandrowicz, O., Zur, S., Lebendiger, Y., & Lerman, Y. (2020). Shade maps for prioritizing municipal microclimatic action in hot climates: Learning from Tel Aviv-Yafo. Sustainable Cities and Society, 53, 101931. https://doi.org/10.1016/j.scs.2019.101931
  5. Boumaraf, H., & Amireche, L. (2021). Thermal comfort and pedestrian behaviors in urban public spaces in cities with warm and dry climates. Open House International, 46(1), 143-159. https://doi.org/10.1108/ ohi-06-2020-0060
  6. Bröde, P., Krüger, E. L., Rossi, F. A., & Fiala, D. (2012). Predicting urban outdoor thermal comfort by the universal thermal climate index (UTCI)-A case study in Southern Brazil. International Journal of Biometeorology, 56(3), 471-480. https://doi.org/10.1007/s00484-011-0452-3
  7. Brychkov, D., Garb, Y., & Pearlmutter, D. (2018). The influence of climatocultural background on outdoor thermal perception. International Journal of Biometeorology, 62(10), 1873-1886. https://doi. org/10.1007/s00484-018-1590-7
  8. Center for Economic and Social Research. (2023). Tel Aviv-Yafo: Numbers in the mirror. https://www.tel-aviv. gov.il/Transparency/DocLib6/2023-‫בראיהמספרים‬ ‫‪.pdf‬תלאביב‬ [in Hebrew]
  9. Cohen, P., Shashua-Bar, L., Keller, R., Gil-Ad, R., Yaakov, Y., Lukyanov, V., Bar, P., Tanny, J., Cohen, S., & Potchter, O. (2019). Urban outdoor thermal perception in hot arid Beer Sheva, Israel: Methodological and gender aspects. Building and Environment, 160, 106169. https://doi.org/10.1016/j. buildenv.2019.106169
  10. Elnabawi, M. H., & Hamza, N. (2019). Behavioural perspectives of outdoor thermal comfort in urban areas: A critical review. Atmosphere, 11(1), 51. https://doi.org/10.3390/atmos11010051
  11. Elnabawi, M. H., Hamza, N., & Dudek, S. (2016). Thermal perception of outdoor urban spaces in the hot arid region of Cairo, Egypt. Sustainable Cities and Society, 22, 136-145. https://doi.org/10.1016/j. scs.2016.02.005
  12. Huang, K. T., Lin, T. P., & Lien, H. C. (2015). Investigating thermal comfort and user behaviors in outdoor spaces: A seasonal and spatial perspective. Advances in Meteorology, 2015. https://doi. org/10.1155/2015/423508
  13. IPCC. (2023). Summary for policymakers. In Climate change 2023: Synthesis report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, H. Lee & J. Romero (Eds.)] (pp. 1-34). Intergovernmental Panel on Climate Change (IPCC). https://www.ipcc.ch/report/ar6/syr/downloads/report/IPCC_AR6_SYR_SPM.pdf
  14. Israel Meteorological Service. (2021). Climate atlas of Israel. https://ims.gov.il/en/ClimateAtlas
  15. Kim, S. W., & Brown, R. D. (2022). Pedestrians' behavior based on outdoor thermal comfort and micro- scale thermal environments, Austin, TX. Science of the Total Environment, 808, 152143. https://doi. org/10.1016/j.scitotenv.2021.152143
  16. Labdaoui, K., Mazouz, S., El Hak Acidi, A., Cools, M., Moeinaddini, M., & Teller, J. (2021). Utilizing thermal comfort and walking facilities to propose a comfort walkability index (CWI) at the neighbourhood level. Building and Environment, 193(January), 107627. https://doi.org/10.1016/j.buildenv.2021.107627
  17. Lee, L. S. H. H., Cheung, P. K., Fung, C. K. W. W., & Jim, C. Y. (2020). Improving street walkability: Biometeorological assessment of artificial-partial shade structures in summer sunny conditions. International Journal of Biometeorology, 64(4), 547-560. https://doi.org/10.1007/s00484-019-01840-9
  18. Lin, T.-P. (2009). Thermal perception, adaptation and attendance in a public square in hot and humid regions. Building and Environment, 44(10), 2017-2026. https://doi.org/10.1016/j.buildenv.2009.02.004
  19. Lin, T.-P., Tsai, K. T., Liao, C. C., & Huang, Y. C. (2013). Effects of thermal comfort and adaptation on park attendance regarding different shading levels and activity types. Building and Environment, 59, 599-611. https://doi.org/10.1016/j.buildenv.2012.10.005
  20. Litman, T. (2024). Economic value of walkability. Transportation Research Board. www.vtpi.org/walkability.pdf
  21. Ma, X., Tian, Y., Du, M., Hong, B., & Lin, B. (2021). How to design comfortable open spaces for the elderly? Implications of their thermal perceptions in an urban park. Science of the Total Environment, 768, 144985. https://doi.org/10.1016/j.scitotenv.2021.144985
  22. Marques de Almeida, D. (2007). The importance of shade as a strategy to foster walking in summer. Paper presented at the 8th International Conference for Walking. https://library.walk21.com/conference/427
  23. Marques de Almeida, D. (2008). Rating 'shade' on urban walkability. Paper presented at the 9th International Conference for Walking. https://library.walk21.com/conference/598
  24. Marques de Almeida, D. (2010). The importance of street shade for downtown traditional retail business. Paper presented at the 11th International Conference for Walking. https://library.walk21.com/ conference/688
  25. Martinelli, L., Lin, T. P., & Matzarakis, A. (2015). Assessment of the influence of daily shadings pattern on human thermal comfort and attendance in Rome during summer period. Building and Environment, 92, 30-38. https://doi.org/10.1016/j.buildenv.2015.04.013
  26. 413 Levenson et al. Buildings and Cities DOI: 10.5334/bc.574
  27. Melnikov, V. R., Christopoulos, G. I., Krzhizhanovskaya, V. V., Lees, M. H., & Sloot, P. M. A. A. (2022). Behavioural thermal regulation explains pedestrian path choices in hot urban environments. Scientific Reports, 12(1), 1-12. https://doi.org/10.1038/s41598-022-06383-5
  28. Middel, A., AlKhaled, S., Schneider, F. A., Hagen, B., & Coseo, P. (2021). 50 Grades of shade. Bulletin of the American Meteorological Society, 102(9), E1805-E1820. https://doi.org/10.1175/BAMS-D-20-0193.1
  29. Middel, A., Selover, N., Hagen, B., & Chhetri, N. (2016). Impact of shade on outdoor thermal comfort-A seasonal field study in Tempe, Arizona. International Journal of Biometeorology, 60(12), 1849-1861. https://doi.org/10.1007/s00484-016-1172-5
  30. Municipality of Tel Aviv-Yafo. (2024). The 10th transportation survey among the residents of Tel Aviv-Yafo. https://www.tel-aviv.gov.il/Transparency/DocLib6/2024 ‫‪.pdf‬סקרתחבורהבקרבתושביתל-אביב-יפומספר01,‬ [in Hebrew]
  31. Nikolopoulou, M., & Lykoudis, S. (2007). Use of outdoor spaces and microclimate in a Mediterranean urban area. Building and Environment, 42(10), 3691-3707. https://doi.org/10.1016/j.buildenv.2006.09.008
  32. NOAA. (2024). NOAA GML sunrise/sunset calculator. National Oceanic and Atmospheric Administration (NOAA). https://gml.noaa.gov/grad/solcalc/sunrise.html
  33. Nordback, K., O'Brien, S., & Blank, K. (2018). Bicycle and pedestrian count programs: Summary of practice and key resources. https://www.pedbikeinfo.org/downloads/PBIC_Infobrief_Counting.pdf
  34. Osmond, P., & Sharifi, E. (2017). Guide to cooling strategies. Low Carbon Living CRC. https://www. lowcarbonlivingcrc.unsw.edu.au/sites/all/files/publications_file_attachments/rp2024_guide_to_urban_ cooling_strategies_2017_web.pdf
  35. Pantavou, K., Theoharatos, G., Santamouris, M., & Asimakopoulos, D. (2013). Outdoor thermal sensation of pedestrians in a Mediterranean climate and a comparison with UTCI. Building and Environment, 66, 82-95. https://doi.org/10.1016/j.buildenv.2013.02.014
  36. Pearlmutter, D., Berliner, P., & Shaviv, E. (2006). Physical modeling of pedestrian energy exchange within the urban canopy. Building and Environment, 41(6), 783-795. https://doi.org/10.1016/j.buildenv.2005.03.017
  37. Pearlmutter, D., Jiao, D., & Garb, Y. (2014). The relationship between bioclimatic thermal stress and subjective thermal sensation in pedestrian spaces. International Journal of Biometeorology, 58(10), 2111-2127. https://doi.org/10.1007/s00484-014-0812-x
  38. Saaroni, H., Pearlmutter, D., & Hatuka, T. (2015). Human-biometeorological conditions and thermal perception in a Mediterranean coastal park. International Journal of Biometeorology, 59(10), 1347-1362. https://doi.org/10.1007/s00484-014-0944-z
  39. Sakhri, H., Bada, Y., & Emmanuel, R. (2022). Study on correlation between shadow patterns and human behaviour in hot, arid cities: A case study of Biskra, Algeria. International Journal of Biometeorology, 66(12), 2517-2528. https://doi.org/10.1007/s00484-022-02376-1
  40. Schneider, R. J., Arnold, L. S., & Ragland, D. R. (2009). Pilot model for estimating pedestrian intersection crossing volumes. Transportation Research Record: Journal of the Transportation Research, 2140, 13-26. https://doi.org/10.3141/2140-02
  41. Shooshtarian, S., Rajagopalan, P., & Wakefield, R. (2018). Effect of seasonal changes on usage patterns and behaviours in educational precinct in Melbourne. Urban Climate, 26(May 2017), 133-148. https://doi. org/10.1016/j.uclim.2018.08.013
  42. Thorsson, S., Honjo, T., Lindberg, F., Eliasson, I., & Lim, E.-M. (2007). Thermal comfort and outdoor activity in Japanese urban public places. Environment and Behavior, 39(5), 660-684. https://doi. org/10.1177/0013916506294937
  43. Thorsson, S., Lindqvist, M., & Lindqvist, S. (2004). Thermal bioclimatic conditions and patterns of behaviour in an urban park in Göteborg, Sweden. International Journal of Biometeorology, 48, 149-156. https://doi. org/10.1007/s00484-003-0189-8
  44. Tong, Y., & Bode, N. W. F. (2022). The principles of pedestrian route choice. Journal of the Royal Society Interface, 19(189). https://doi.org/10.1098/rsif.2022.0061
  45. Ugolini, F., Massetti, L., Calaza-Martínez, P., Cariñanos, P., Dobbs, C., Ostoic, S. K., Marin, A. M., Pearlmutter, D., Saaroni, H., Šaulienė, I., Simoneti, M., Verlič, A., Vuletić, D., & Sanesi, G. (2020). Effects of the COVID-19 pandemic on the use and perceptions of urban green space: An international exploratory study. Urban Forestry and Urban Greening, 56(June). https://doi.org/10.1016/j. ufug.2020.126888
  46. Vasilikou, C., & Nikolopoulou, M. (2020). Outdoor thermal comfort for pedestrians in movement: Thermal walks in complex urban morphology. International Journal of Biometeorology, 64(2), 277-291. https:// doi.org/10.1007/s00484-019-01782-2
  47. Watanabe, S., & Ishii, J. (2016). Effect of outdoor thermal environment on pedestrians' behavior selecting a shaded area in a humid subtropical region. Building and Environment, 95, 32-41. https://doi. org/10.1016/j.buildenv.2015.09.015