Deep Learning for Heat Transfer Enhancement in Microchannels
Abstract
Microchannels are crucial for thermal management in microelectronic cooling, medical equipment, and space technology. Microchannel designing with optimal heat transfer and minimum pressure drop is still a challenging task even today. Conventional approaches like computational fluid dynamics (CFD) and experimentations consume enormous time and computational power. Here, in this paper, an optimization framework based on deep learning (DL) for the microchannel heat transfer performance is presented. We introduce a CNN-PINN-based hybrid model for the prediction of heat transfer coefficients and pressure drop in different microchannel geometries and flow rates. Our proposed model is compared to high-fidelity CFD simulations and experiments and found to be more accurate and efficient. As a demonstration example, electronics cooling is utilized and demonstrates that DL-optimized wavy-channel possesses a 22% decrease in thermal resistance compared to conventional straight channels. The platform is designed to provide an evidence-based pathway toward the creation of next-generation microchannel systems for future applications in renewable energy, electric cars, and advanced manufacturing.
References (24)
- Bar-Cohen, A., Wang, P., & Wang, X. (2015). Thermal management of microelectronics: Challenges and opportunities. Journal of Heat Transfer, 137(5), 051018. https://doi.org/10.1115/1.4029823
- Brunton, S. L., Noack, B. R., & Koumoutsakos, P. (2020). Machine learning for fluid mechanics. Annual Review of Fluid Mechanics, 52, 477-508. https://doi.org/10.1146/annurev-fluid-010719-060214
- Chakraborty, S., Saha, S., & Chattopadhyay, H. (2022). A review on the role of artificial intelligence in heat transfer analysis. Applied Thermal Engineering, 217, 119210. https://doi.org/10.1016/j.applthermaleng.2022.119210
- Chen, Y., Li, M., & Zhao, H. (2021). Advances in microchannel heat transfer: Fundamentals and applications. Journal of Heat Transfer, 143(3), 031801. https://doi.org/10.1115/1.4049702
- Guo, Z., Wang, P., & Liu, F. (2022). Transition flow dynamics and heat transfer characteristics in microchannel cooling systems. International Journal of Thermal Sciences, 176, 107511. https://doi.org/10.1016/j.ijthermalsci.2022.107511
- Huang, C., Zhang, X., & Sun, T. (2023). Multi-scale modeling of heat transfer in microfluidic systems. Computational Thermal Sciences, 15(2), 125-139. https://doi.org/10.1615/ComputThermalScien.2023009123
- Jalili, D., Jang, S., Jadidi, M., Giustini, G., Keshmiri, A., & Mahmoudi Larimi, Y. (2023). Physics-informed neural networks for heat transfer prediction in two- phase flows. International Journal of Heat and Mass Transfer, 221, 125089. https://doi.org/10.1016/j.ijheatmasstransfer.2023.125089
- Jeon, J., Lee, J., Vinuesa, R., & Kim, S. J. (2023). Residual-based physics- informed transfer learning: A hybrid method for accelerating long-term CFD simulations via deep learning. International Journal of Heat and Mass Transfer, 220, 124900. https://doi.org/10.1016/j.ijheatmasstransfer.2023.124900
- Kandlikar, S. G., Garimella, S., Li, D., Colin, S., & King, M. R. (2014). Heat transfer and fluid flow in minichannels and microchannels. Elsevier.
- Karniadakis, G. E., Kevrekidis, I. G., Lu, L., Perdikaris, P., Wang, S., & Yang, L. (2021). Physics-informed machine learning. Nature Reviews Physics, 3(6), 422-440. https://doi.org/10.1038/s42254-021-00314-5
- Li, R., Feng, Z., & Tang, J. (2023). Reinforcement learning-based optimization of microchannel heat exchangers. Applied Thermal Engineering, 216, 119056. https://doi.org/10.1016/j.applthermaleng.2023.119056
- Liu, W., Chen, G., & Zhou, Y. (2022). Microscale fluid dynamics and heat transfer in high-performance microchannel designs. Applied Thermal Engineering, 210, 118037. https://doi.org/10.1016/j.applthermaleng.2022.118037
- Mehta, P., Sharma, A., & Gupta, R. (2022). Computational fluid dynamics and its evolution in microchannel heat transfer: A review. Journal of Thermal Science and Engineering Applications, 14(2), 021002. https://doi.org/10.1115/1.4052335
- Preskill, J. (2018). Quantum computing in the NISQ era and beyond. Quantum, 2, 79. https://doi.org/10.22331/q-2018-08-06-79
- Raissi, M., Perdikaris, P., & Karniadakis, G. E. (2019). Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. Journal of Computational Physics, 378, 686-707. https://doi.org/10.1016/j.jcp.2018.10.045
- Samek, W., Montavon, G., Vedaldi, A., Hansen, L. K., & Müller, K. R. (2021). Explainable AI: Interpreting, explaining and visualizing deep learning. Springer.
- Sundén, B. (2012). Heat transfer in microchannels. International Journal of Heat and Mass Transfer, 55(23-24), 6556-6565. https://doi.org/10.1016/j.ijheatmasstransfer.2012.06.065
- Sun, W., He, Y., & Liu, J. (2023). Physics-informed neural networks for heat transfer problems: A review and future directions. Journal of Computational Physics, 482, 112021. https://doi.org/10.1016/j.jcp.2023.112021
- Sun, Y., Wang, J., & Zhou, H. (2022). Computational scalability in deep learning models for heat transfer applications. International Journal of Heat and Mass Transfer, 192, 122853. https://doi.org/10.1016/j.ijheatmasstransfer.2022.122853
- Tuckerman, D. B., & Pease, R. F. (1981). High-performance heat sinking for VLSI. IEEE Electron Device Letters, 2(5), 126-129. https://doi.org/10.1109/EDL.1981.25367
- Wang, R., Xu, B., & Chen, Y. (2023). Phase-change material integration for enhanced microchannel cooling. Renewable Energy, 210, 203-217. https://doi.org/10.1016/j.renene.2023.03.025
- Wang, T., Zhou, F., & Zhang, J. (2021). Deep learning optimization of microchannel geometry for enhanced heat transfer. Renewable Energy, 197, 184-198. https://doi.org/10.1016/j.renene.2021.01.098
- Xu, C., Ma, J., & Lin, K. (2019). Nanofluid applications in microchannels for electronic cooling: A review. Heat and Mass Transfer, 55(9), 2561-2578. https://doi.org/10.1007/s00231-019-02627-9
- Yao, C., Zhang, H., & Wang, X. (2024). Quantum computing approaches to accelerate heat transfer simulations. Physical Review Applied, 21(1), 014003. https://doi.org/10.1103/PhysRevApplied.21.014003