Academia.eduAcademia.edu

Outline

Asymmetry of tropical precipitation change under global warming

2007, Geophysical Research Letters

https://doi.org/10.1029/2007GL030327

Abstract

A clear trend of tropical precipitation changes induced by global warming is found in hemispherical averages of most climate model simulations as well as from observation. It is observed that in response to global warming, an asymmetric pattern develops between tropical precipitation changes in the northern and southern hemispheres, and this asymmetry is locked with the seasonal cycle of tropical convection. In boreal summer (winter), the northern hemispherical average departure from tropical mean increases (decreases), while the departure of the southern hemispherical average decreases (increases). This implies an enhanced seasonal precipitation range between rainy and dry seasons and an increased precipitation difference between northern and southern hemispheres.

References (25)

  1. Adler, R. F., et al. (2003), The version-2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979 -present), J. Hydro- meteorol., 4, 1147 -1167.
  2. Allen, M. R., and W. J. Ingram (2002), Constraints on future changes in climate and the hydrologic cycle, Nature, 419, 224 -232.
  3. Boer, G. J., G. Flato, and D. A. Ramsden (2000), A transient climate change simulation with greenhouse gas and aerosol forcing: Projected climate to the twenty-first century, Clim. Dyn., 16, 427 -450.
  4. Chou, C., and M.-H. Lo (2007), Asymmetric responses of tropical precipi- tation during ENSO, J. Clim., 19, 3411 -3433.
  5. Chou, C., and J. D. Neelin (2004), Mechanisms of global warming impacts on regional tropical precipitation, J. Clim., 17, 2688 -2701.
  6. Cubasch, U., et al. (2001), Projections of future climate change, in Climate Change 2001: The Science of Climate Change, edited by J. T. Houghton et al., chap. 9, pp. 527 -582, Cambridge Univ. Press, Cambridge, U. K.
  7. Dai, A., G. A. Meehl, W. M. Washington, T. M. L. Wigley, and J. M. Arblaster (2001), Ensemble simulation of twenty-first century climate changes: Business-as-usual versus CO 2 stabilization, Bull. Am. Meteorol. Soc., 82, 2377 -2388.
  8. Douville, H., F. Chauvin, S. Planton, J.-F. Royer, D. Salas-Me ´lia, and S. Tyteca (2002), Sensitivity of the hydrological cycle to increasing amounts of greenhouse gases and aerosol, Clim. Dyn., 20, 45 -68.
  9. Held, I. M., and B. J. Soden (2006), Robust responses of the hydrological cycle to global warming, J. Clim., 19, 5686 -5699.
  10. Hollander, M., and D. A. Wolfe (1999), Nonparametric Statistical Methods, 2nd ed., 438 pp., John Wiley, New York.
  11. Hu, Z.-Z., M. Latif, E. Roeckner, and L. Bengtsson (2000), Intensified Asian summer monsoon and its variability in a coupled model forced by increasing greenhouse gas concentrations, Geophys. Res. Lett., 27, 2681 -2684.
  12. Meehl, G. A., W. M. Washington, B. D. Santer, W. D. Collins, J. M. Arblasteri, A. Hu, D. M. Lawrence, H. Teng, L. E. Buja, and W. G. Strand (2006), Climate change projections for the twenty-first century and climate change commitment in the CCSM3, J. Clim., 19, 2597 - 2616.
  13. Neelin, J. D., and N. Zeng (2000), A quasi-equilibrium tropical circulation model-Formulation, J. Atmos. Sci., 57, 1741 -1766.
  14. Neelin, J. D., C. Chou, and H. Su (2003), Tropical drought regions in global warming and El Nin ˜o teleconnections, Geophys. Res. Lett., 30(24), 2275, doi:10.1029/2003GL018625.
  15. Neelin, J. D., M. Mu ¨nnich, H. Su, J. E. Meyerson, and C. E. Holloway (2006), Tropical drying trends in global warming models and observa- tions, Proc. Natl. Acad. Sci. U. S. A., 103, 6110 -6115.
  16. Roeckner, E., L. Bengtsson, J. Feichter, J. Lelieveld, and H. Rodhe (1999), Transient climate change simulations with a coupled atmosphere-ocean GCM including the tropospheric sulfur cycle, J. Clim., 12, 3004 -3032.
  17. Stott, P. A., and J. A. Kettleborough (2002), Origins and estimates of uncertainty in predictions of twenty-first century temperature rise, Nat- ure, 416, 723 -726.
  18. Teng, H., L. E. Buja, and G. A. Meehl (2006), Twenty-first-century climate change commitment from a multi-model ensemble, Geophys. Res. Lett., 33, L07706, doi:10.1029/2005GL024766.
  19. Trenberth, K. E., J. Fasullo, and L. Smith (2005), Trends and variability in column integrated atmospheric water vapor, Clim. Dyn., 24, 741 -758.
  20. Wentz, F. J. (1997), A well-calibrated ocean algorithm for SSM/I, J. Geo- phys. Res., 102, 8703 -8718.
  21. Wentz, F. J., M. Schabel (2000), Precise climate monitoring using complementary data sets, Nature, 403, 414 -416.
  22. Williams, K. D., C. A. Senior, and J. F. B. Mitchell (2001), Transient climate change in the Hadley Centre Models: the role of physical pro- cesses, J. Clim., 14, 2659 -2674.
  23. Yonetani, T., and H. B. Gordon (2001), Simulated changes in the frequency of extremes and regional features of seasonal/annual temperature and precipitation when atmospheric CO 2 is doubled, J. Clim., 14, 1765 - 1779.
  24. Zeng, N., J. D. Neelin, and C. Chou (2000), A quasi-equilibrium tropical circulation model-Implementation and simulation, J. Atmos. Sci., 57, 1767 -1796.
  25. ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ À C. Chou and J.-Y. Tu, Research Center for Environmental Changes, Academia Sinica, 128, Section 2, Academia Road, Nankang, Taipei, 11529, Taiwan. (jienyi@rcec.sinica.edu.tw; chiachou@rcec.sinica.edu.tw) P.-H. Tan, Department of History and Geography, National Chiayi University, No. 85, Wunlong Village, Minsyong Township, Chiayi 621, Taiwan. (tan@mail.ncyu.edu.tw)