MOFs in carbon capture-past, present and future
https://doi.org/10.1016/J.JCOU.2020.101297Abstract
Metal Organic Frame works (MOFs) are being widely used in carbon capture through adsorption and membrane techniques, which are yet to be commercialized. This is due to their high affinity towards acidic gases and exceptional characteristics such as crystallinity, structural stability, high surface area and flexible pore dimensions. In this review, wide range of topics viz., synthesis protocols, modifications employed to further improve their attributes, comprehensive comparison of different MOFs used in carbon capture, thermo-kinetics modelling studies, contactors and material screening. Every section has been discussed in detail in terms of developmental trends, future challenges and prospects besides summarizing in the form of comprehensive tables at a glance for the benefit of the readers. Solvo-thermal method was found to be the most effective synthesis method besides ultra-sonication and microwave assisted methods, which also gave very good crystalline structures. The copper ligand based unmodified Cu-BTC MOF gave the maximum CO 2 uptake value of 9.59 mmol/g at 273 K and 1 atm. Zn(Bmic)(AT) MOF was the only species to be tested at 353 K. Alternatively, a photo-responsive MOF, Mg-IRMOF-74-III functionalized with azopyridine gave a CO 2 uptake of 89 cc/g which is comparable to many of the conventional MOFs. Kinetics indicate MOF adsorption mostly follows pseudo second order reactions either along with Toth isotherms or modified Langmuir isotherms. Fixed and fluidized bed reactors perform the best in terms of carbon capture studies. Moisture affinity, active sites and crystallinity were found to be the best factors considered whilst screening of proper MOFs. Abbreviations: CC, Carbon dioxide Capture; SA, Surface area; PV, Pore volume; DMF, N,N-Dimethylformamide; mmol/g, millimoles of CO 2 per gram of adsorbent; cc/g, cubic centimeters of CO 2 per gram of adsorbent; CLC, Chemical Looping Combustion.
References (240)
- International Energy Agency (IEA), World Energy Outlook 2019 -Analysis -IEA, World Energy Outlook 2019, 2019, 1. https://www.iea.org/reports/world-ene rgy-outlook-2019 (accessed May 5, 2020).
- B. Bereiter, S. Eggleston, J. Schmitt, C. Nehrbass-Ahles, T.F. Stocker, H. Fischer, S. Kipfstuhl, J. Chappellaz, CO₂ and Greenhouse Gas Emissions, Our World in Data., Geophys. Res. Lett. 42 (2015) 542-549.
- world urbanization prospects, The World Lost a Belgium-sized Area of Primary Rainforests Last Year | World Resources Institute, United Nation Dep. Econ. Soc. Aff. (n.d.). https://www.wri.org/blog/2019/04/world-lost-belgium-sized-are a-primary-rainforests-last-year?utm_campaign=GFW&source=socialmediakit &utm_medium=gfwsocial&utm_term=2018tcl_4_2019 (accessed May 5, 2020).
- M. Wang, A. Lawal, P. Stephenson, J. Sidders, C. Ramshaw, Post-combustion CO 2 capture with chemical absorption: A state-of-the-art review, Chem. Eng. Res. Des. 89 (2011) 1609-1624.
- D. Jansen, M. Gazzani, G. Manzolini, E. Van Dijk, M. Carbo, Pre-combustion CO 2 capture, Int. J. Greenh. Gas Control. 40 (2015) 167-187.
- R.M. Cuéllar-Franca, A. Azapagic, Carbon capture, storage and utilisation technologies: a critical analysis and comparison of their life cycle environmental impacts, J. CO2 Util. 9 (2015) 82-102.
- S.M. Carpenter, H.A. Long, Integration of carbon capture in IGCC systems. Integr. Gasif. Comb. Cycle Technol., 2017, pp. 445-463.
- K.M.S. Salvinder, H. Zabiri, S.A. Taqvi, M. Ramasamy, F. Isa, N.E.M. Rozali, H. Suleman, A. Maulud, A.M. Shariff, An overview on control strategies for CO 2 capture using absorption/stripping system, Chem. Eng. Res. Des. 147 (2019) 319-337.
- I. Sreedhar, T. Nahar, A. Venugopal, B. Srinivas, Carbon capture by absorption - path covered and ahead, Renewable Sustainable Energy Rev. 76 (2017) 1080-1107.
- M.K. Al Mesfer, M. Danish, Y.M. Fahmy, M.M. Rashid, Post-combustion CO 2 capture with activated carbons using fixed bed adsorption, Heat Mass Transf. Und Stoffuebertragung. 54 (2018) 2715-2724.
- Z. Cui, D. Demontigny, Part 7: a review of CO 2 capture using hollow fiber membrane contactors, Carbon Manag. 4 (2013) 69-89.
- A.M. Yousef, W.M. El-Maghlany, Y.A. Eldrainy, A. Attia, New approach for biogas purification using cryogenic separation and distillation process for CO 2 capture, Energy. 156 (2018) 328-351.
- F. Güleç, W. Meredith, C.G. Sun, C.E. Snape, A novel approach to CO 2 capture in fluid catalytic cracking-chemical looping combustion, Fuel. 244 (2019) 140-150.
- F. Wu, P.A. Dellenback, M. Fan, Highly efficient and stable calcium looping based pre-combustion CO 2 capture for high-purity H2 production, Mater. Today Energy. 13 (2019) 233-238.
- G.A. Mutch, S. Shulda, A.J. McCue, M.J. Menart, C.V. Ciobanu, C. Ngo, J. A. Anderson, R.M. Richards, D. Vega-Maza, Carbon capture by metal oxides: unleashing the potential of the (111) facet, J. Am. Chem. Soc. 140 (2018) 4736-4742.
- S. Li, T. Jiang, Z. Xu, Y. Zhao, X. Ma, S. Wang, The Mn-promoted double-shelled CaCO 3 hollow microspheres as high efficient CO 2 adsorbents, Chem. Eng. J. 372 (2019) 53-64.
- S.A. Anuar, W.N.R. Wan Isahak, M.S. Masdar, Carbon nanoflake hybrid for biohydrogen CO 2 capture: Breakthrough adsorption test, Int. J. Energy Res. 44 (2020) 3148-3159.
- R. Konnola, T.S. Anirudhan, Efficient carbon dioxide capture by nitrogen and sulfur dual-doped mesoporous carbon spheres from polybenzoxazines synthesized by a simple strategy, J. Environ. Chem. Eng. 8 (2020).
- N.F. Attia, M. Jung, J. Park, H. Jang, K. Lee, H. Oh, Flexible nanoporous activated carbon cloth for achieving high H 2 , CH 4 , and CO 2 storage capacities and selective CO 2 /CH 4 separation, Chem. Eng. J. 379 (2020) 122367.
- D. Mantzalis, N. Asproulis, D. Drikakis, Enhanced carbon dioxide adsorption through carbon nanoscrolls, Phys. Rev. E -Stat. Nonlinear, Soft Matter Phys. (2011).
- D. Mantzalis, N. Asproulis, D. Drikakis, Filtering carbon dioxide through carbon nanotubes, Chem. Phys. Lett. (2011).
- D. Mantzalis, N. Asproulis, D. Drikakis, The effects of defects in CO2 diffusion through carbon nanotubes, Chem. Phys. Lett. (2014).
- M.A. Klunk, M. Das, S. Dasgupta, A.N. Impiombato, N.R. Caetano, P.R. Wander, C.A.M. Moraes, Comparative study using different external sources of aluminum on the zeolites synthesis from rice husk ash, Mater. Res. Express 7 (2019).
- P. Wang, Q. Sun, Y. Zhang, J. Cao, Synthesis of zeolite 4A from kaolin and its adsorption equilibrium of carbon dioxide, Materials (Basel). 12 (2019).
- S.M.W. Wilson, F.H. Tezel, Direct dry air capture of CO 2 using VTSA with faujasite zeolites, Ind. Eng. Chem. Res. (2020).
- A.A. Dabbawala, I. Ismail, B.V. Vaithilingam, K. Polychronopoulou, G. Singaravel, S. Morin, M. Berthod, Y. Al Wahedi, Synthesis of hierarchical porous Zeolite-Y for enhanced CO 2 capture, Microporous Mesoporous Mater. (2020), https://doi.org/10.1016/j.micromeso.2020.110261.
- M. Mazaj, M. Bjelica, E. Žagar, N.Z. Logar, S. Kovačič, Zeolite nanocrystals embedded in microcellular carbon foam as a high-performance CO 2 capture adsorbent with energy-saving regeneration properties, Chem. Sus. Chem. (2020).
- H. Furukawa, K.E. Cordova, M. O'Keeffe, O.M. Yaghi, The chemistry and applications of metal-organic frameworks, Science 80 (2013) 341.
- Q. Gao, L. Bai, X. Zhang, P. Wang, P. Li, Y. Zeng, R. Zou, Y. Zhao, Synthesis of microporous nitrogen-rich covalent-organic framework and its application in CO 2 capture, Chinese J. Chem. 33 (2015) 90-94.
- M.Q. Du, Y.Z. Peng, Y.C. Ma, L. Yang, Y.L. Zhou, F.K. Zeng, X.K. Wang, M.L. Song, G.J. Chang, Selective carbon dioxide capture in antifouling indole-based microporous organic polymers, Chinese J. Polym. Sci. (English Ed. 38 (2020) 187-194.
- D.S. Ahmed, G.A. El-Hiti, E. Yousif, A.A. Ali, A.S. Hameed, Design and synthesis of porous polymeric materials and their applications in gas capture and storage: a review, J. Polym. Res. 25 (2018).
- Z. Kang, Y. Peng, Y. Qian, D. Yuan, M.A. Addicoat, T. Heine, Z. Hu, L. Tee, Z. Guo, D. Zhao, Mixed matrix membranes (MMMs) comprising exfoliated 2D covalent organic frameworks (COFs) for efficient CO 2 separation, Chem. Mater. (2016).
- H. Hong, Z. Guo, D. Yan, H. Zhan, A Tröger's base-derived microporous organic polymers containing pyrene units for selective adsorption of CO 2 over N 2 and CH 4 , Microporous Mesoporous Mater. (2020).
- L. Wang, J. Guo, X. Xiang, Y. Sang, J. Huang, Melamine-supported porous organic polymers for efficient CO 2 capture and Hg 2+ removal, Chem. Eng. J. (2020).
- M.P. Suh, H.J. Park, T.K. Prasad, D.W. Lim, Hydrogen storage in metal-organic frameworks, Chem. Rev. 112 (2012) 782-835.
- J. An, S.J. Geib, N.L. Rosi, High and selective CO 2 uptake in a cobalt adeninate metal-organic framework exhibiting pyrimidine-and amino-decorated pores, J. Am. Chem. Soc. 132 (2010) 38-39.
- V. Chandra, J. Park, Y. Chun, J.W. Lee, I.C. Hwang, K.S. Kim, Water-dispersible magnetite-reduced graphene oxide composites for arsenic removal, ACS Nano 4 (2010) 3979-3986.
- Z.Z. Lu, R. Zhang, Y.Z. Li, Z.J. Guo, H.G. Zheng, Solvatochromic behavior of a nanotubular metal-organic framework for sensing small molecules, J. Am. Chem. Soc. 133 (2011) 4172-4174.
- C. Prestipino, L. Regli, J.G. Vitillo, F. Bonino, A. Damin, C. Lamberti, A. Zecchina, P.L. Solari, K.O. Kongshaug, S. Bordiga, Local structure of framework Cu(II) in HKUST-1 metallorganic framework: spectroscopic characterization upon activation and interaction with adsorbates, Chem. Mater. 18 (2006) 1337-1346.
- S. Hasegawa, S. Horike, R. Matsuda, S. Furukawa, K. Mochizuki, Y. Kinoshita, S. Kitagawa, Three-dimensional porous coordination polymer functionalized with amide groups based on tridentate ligand: selective sorption and catalysis, J. Am. Chem. Soc. 129 (2007) 2607-2614.
- P. Horcajada, T. Chalati, C. Serre, B. Gillet, C. Sebrie, T. Baati, J.F. Eubank, D. Heurtaux, P. Clayette, C. Kreuz, J.S. Chang, Y.K. Hwang, V. Marsaud, P. N. Bories, L. Cynober, S. Gil, G. Férey, P. Couvreur, R. Gref, Porous metal-organic- framework nanoscale carriers as a potential platform for drug deliveryand imaging, Nat. Mater. 9 (2010) 172-178.
- Q.Q. Qiao, G.R. Li, Y.L. Wang, X.P. Gao, To enhance the capacity of Li-rich layered oxides by surface modification with metal-organic frameworks (MOFs) as cathodes for advanced lithium-ion batteries, J. Mater. Chem. A 4 (2016) 4440-4447.
- J. Khan, N. Iqbal, A. Asghar, T. Noor, Novel amine functionalized metal organic framework synthesis for enhanced carbon dioxide capture, Mater. Res. Express 6 (2019).
- M. Klimakow, P. Klobes, A.F. Thünemann, K. Rademann, F. Emmerling, Mechanochemical synthesis of metal-organic frameworks: A fast and facile approach toward quantitative yields and high specific surface areas, Chem. Mater. 22 (2010) 5216-5221.
- N. Abdollahi, M.Y. Masoomi, A. Morsali, P.C. Junk, J. Wang, Sonochemical synthesis and structural characterization of a new Zn(II) nanoplate metal-organic framework with removal efficiency of Sudan red and Congo red, Ultrason. Sonochem. 45 (2018) 50-56.
- M.S. Samuel, J. Bhattacharya, C. Parthiban, G. Viswanathan, N.D. Pradeep Singh, Ultrasound-assisted synthesis of metal organic framework for the photocatalytic reduction of 4-nitrophenol under direct sunlight, Ultrason. Sonochem. 49 (2018) 215-221.
- F. Zhang, T. Zhang, X. Zou, X. Liang, G. Zhu, F. Qu, Electrochemical synthesis of metal organic framework films with proton conductive property, Solid State Ion. 301 (2017) 125-132.
- A. Carné-Sánchez, I. Imaz, M. Cano-Sarabia, D. Maspoch, A spray-drying strategy for synthesis of nanoscale metal-organic frameworks and their assembly into hollow superstructures, Nat. Chem. 5 (2013) 203-211.
- P.A. Bayliss, I.A. Ibarra, E. Pérez, S. Yang, C.C. Tang, M. Poliakoff, M. Schröder, Synthesis of metal-organic frameworks by continuous flow, Green Chem. 16 (2014) 3796-3802.
- B. He, M.M. Sadiq, M.P. Batten, K. Suzuki, M. Rubio-Martinez, J. Gardiner, M. R. Hill, Continuous flow synthesis of a Zr magnetic framework composite for post- combustion CO 2 capture, Chem. -A Eur. J. 25 (2019) 13184-13188.
- J. Klinowski, F.A. Almeida Paz, P. Silva, J. Rocha, Microwave-assisted synthesis of metal-organic frameworks, Dalton Trans. 40 (2011) 321-330.
- A. Huang, L. Wan, J. Caro, Microwave-assisted synthesis of well-shaped UiO-66- NH2 with high CO 2 adsorption capacity, Mater. Res. Bull. 98 (2018) 308-313.
- L. Valencia, H.N. Abdelhamid, Nanocellulose leaf-like zeolitic imidazolate framework (ZIF-L) foams for selective capture of carbon dioxide, Carbohydr. Polym. 213 (2019) 338-345.
- Y. Abdoli, M. Razavian, S. Fatemi, Bimetallic Ni-co-based metal-organic framework: an open metal site adsorbent for enhancing CO 2 capture, Appl. Organomet. Chem. 33 (2019).
- J. Liao, B. Jin, Y. Zhao, Z. Liang, Highly efficient and durable metal-organic framework material derived Ca-based solid sorbents for CO 2 capture, Chem. Eng. J. 372 (2019) 1028-1037.
- Q. Liu, Y. Ding, Q. Liao, X. Zhu, H. Wang, J. Yang, Fast synthesis of Al fumarate metal-organic framework as a novel tetraethylenepentamine support for efficient CO 2 capture, Colloids Surfaces A Physicochem. Eng. Asp. 579 (2019).
- Y. Chen, H. Wu, D. Lv, W. Yang, Z. Qiao, Z. Li, Q. Xia, An ultramicroporous nickel- based metal-organic framework for adsorption separation of CO 2 over N 2 or CH 4 , Energy Fuels 32 (2018) 8676-8682.
- D. Panda, S. Patra, M.K. Awasthi, S.K. Singh, Lab cooked MOF for CO 2 capture: a sustainable solution to waste management, ACS Appl. Mater. Interfaces (2020).
- Y. Liu, P. Ghimire, M. Jaroniec, Copper benzene-1,3,5-tricarboxylate (Cu-BTC) metal-organic framework (MOF) and porous carbon composites as efficient carbon dioxide adsorbents, J. Colloid Interface Sci. 535 (2019) 122-132.
- R. Vismara, G. Tuci, N. Mosca, K.V. Domasevitch, C. Di Nicola, C. Pettinari, G. Giambastiani, S. Galli, A. Rossin, Amino-decorated bis(pyrazolate) metal- organic frameworks for carbon dioxide capture and green conversion into cyclic carbonates, Inorg. Chem. Front. 6 (2019) 533-545.
- S. Mutyala, S.M. Yakout, S.S. Ibrahim, M. Jonnalagadda, H. Mitta, Enhancement of CO 2 capture and separation of CO 2 /N 2 using post-synthetic modified MIL-100 (Fe), New J. Chem. 43 (2019) 9725-9731.
- R. D'Amato, A. Donnadio, M. Carta, C. Sangregorio, D. Tiana, R. Vivani, M. Taddei, F. Costantino, Water-based synthesis and enhanced CO 2 capture performance of perfluorinated cerium-based metal-organic frameworks with UiO- 66 and MIL-140 topology, ACS Sustain. Chem. Eng. 7 (2019) 394-402.
- M. Kang, J.E. Kim, D.W. Kang, H.Y. Lee, D. Moon, C.S. Hong, A diamine-grafted metal-organic framework with outstanding CO 2 capture properties and a facile coating approach for imparting exceptional moisture stability, J. Mater. Chem. A 7 (2019) 8177-8183.
- S. Lawson, C. Griffin, K. Rapp, A.A. Rownaghi, F. Rezaei, Amine-Functionalized MIL-101 Monoliths for CO 2 Removal from Enclosed Environments, Energy Fuels 33 (2019) 2399-2407.
- R. Zhang, D.X. Meng, F.Y. Ge, J.H. Huang, L.F. Wang, Y.K. Xv, X.G. Liu, M. M. Meng, H. Yan, Z.Z. Lu, H.G. Zheng, W. Huang, Tetrazole-based porous metal- organic frameworks for selective CO 2 adsorption and isomerization studies, Dalton Trans. 49 (2020) 2145-2150.
- K. Sivasankar, S. Pal, M. Thiruppathi, C.H. Lin, Carbonization and preparation of nitrogen-doped porous carbon materials from Zn-MOF and its applications, Materials (Basel). 13 (2020).
- J. Fonseca, S. Choi, Rational synthesis of a hierarchical supramolecular porous material created via self-assembly of metal-organic framework nanosheets, ACS Appl. Mater. Interfaces (2020).
- J. Liu, G.P. Yang, J. Jin, D. Wu, L.F. Ma, Y.Y. Wang, A first new porous d-p HMOF material with multiple active sites for excellent CO 2 capture and catalysis, Chem. Commun. (Camb.) 56 (2020) 2395-2398.
- R. Maity, H.D. Singh, A.K. Yadav, D. Chakraborty, R. Vaidhyanathan, Water- stable adenine-based MOFs with polar pores for selective CO 2 capture, Chem. -An Asian J. 14 (2019) 3736-3741.
- Y.Z. Li, H.H. Wang, H.Y. Yang, L. Hou, Y.Y. Wang, Z. Zhu, An uncommon carboxyl-decorated metal-Organic framework with selective gas adsorption and catalytic conversion of CO 2 , Chem. -A Eur. J. 24 (2018) 865-871.
- R. Maity, D. Chakraborty, S. Nandi, K. Rinku, R. Vaidhyanathan, Microporous mixed-metal mixed-ligand metal organic framework for selective CO 2 capture, CrystEngComm. 20 (2018) 6088-6093.
- V. Benoit, N. Chanut, R.S. Pillai, M. Benzaqui, I. Beurroies, S. Devautour-Vinot, C. Serre, N. Steunou, G. Maurin, P.L. Llewellyn, A promising metal-organic framework (MOF), MIL-96(Al), for CO 2 separation under humid conditions, J. Mater. Chem. A 6 (2018) 2081-2090.
- E. Sánchez-González, P.G.M. Mileo, M. Sagastuy-Breña, J.R. Álvarez, J. E. Reynolds, A. Villarreal, A. Gutiérrez-Alejandre, J. Ramírez, J. Balmaseda, E. González-Zamora, G. Maurin, S.M. Humphrey, I.A. Ibarra, Highly reversible sorption of H 2 S and CO 2 by an environmentally friendly Mg-based MOF, J. Mater. Chem. A. 6 (2018) 16900-16909.
- J. Ethiraj, F. Bonino, J.G. Vitillo, K.A. Lomachenko, C. Lamberti, H. Reinsch, K. P. Lillerud, S. Bordiga, Solvent-driven gate opening in MOF-76-Ce: effect on CO 2 adsorption, ChemSusChem. 9 (2016) 713-719.
- M. Gupta, D. De, K. Tomar, P.K. Bharadwaj, From Zn(II)-Carboxylate to double- walled Zn(II)-Carboxylato phosphate MOF: change in the framework topology, capture and conversion of CO 2 , and catalysis of strecker reaction, Inorg. Chem. 56 (2017) 14605-14611.
- N.A.A. Qasem, N.U. Qadir, R. Ben-Mansour, S.A.M. Said, Synthesis, characterization, and CO 2 breakthrough adsorption of a novel MWCNT/MIL-101 (Cr) composite, J. CO 2 Util. 22 (2017) 238-249.
- W.W. Lestari, A.H. Wibowo, S. Astuti, Irwinsyah, A.Z. Pamungkas, Y.K. Krisnandi, Fabrication of hybrid coating material of polypropylene itaconate containing MOF-5 for CO 2 capture, Prog. Org. Coatings. 115 (2018) 49-55.
- S. Yang, X. Lin, W. Lewis, M. Suyetin, E. Bichoutskaia, J.E. Parker, C.C. Tang, D. R. Allan, P.J. Rizkallah, P. Hubberstey, N.R. Champness, K. Mark Thomas, A. J. Blake, M. Schröder, A partially interpenetrated metal-organic framework for selective hysteretic sorption of carbon dioxide, Nat. Mater. 11 (2012) 710-716.
- L. Liang, C. Liu, F. Jiang, Q. Chen, L. Zhang, H. Xue, H.L. Jiang, J. Qian, D. Yuan, M. Hong, Carbon dioxide capture and conversion by an acid-base resistant metal- organic framework, Nat. Commun. 8 (2017).
- M. Ding, H.L. Jiang, Incorporation of imidazolium-based poly(ionic liquid)s into a metal-organic framework for CO 2 capture and conversion, ACS Catal. 8 (2018) 3194-3201.
- T. Jing, L. Chen, F. Jiang, Y. Yang, K. Zhou, M. Yu, Z. Cao, S. Li, M. Hong, Fabrication of a robust lanthanide metal-organic framework as a multifunctional material for Fe(III) detection, CO 2 capture, and utilization, Cryst. Growth Des. 18 (2018) 2956-2963.
- X.Y. Li, L.N. Ma, Y. Liu, L. Hou, Y.Y. Wang, Z. Zhu, Honeycomb Metal-Organic Framework with Lewis Acidic and Basic Bifunctional Sites: Selective Adsorption and CO 2 Catalytic Fixation, ACS Appl. Mater. Interfaces 10 (2018) 10965-10973.
- B. Ugale, S.S. Dhankhar, C.M. Nagaraja, Exceptionally stable and 20-Connected lanthanide metal-organic frameworks for selective CO 2 capture and conversion at atmospheric pressure, Cryst. Growth Des. 18 (2018) 2432-2440.
- Z. Wang, X. Luo, B. Zheng, L. Huang, C. Hang, Y. Jiao, X. Cao, W. Zeng, R. Yun, Highly selective carbon dioxide capture and cooperative catalysis of a water- stable acylamide-functionalized metal-Organic framework, Eur. J. Inorg. Chem. 2018 (2018) 1309-1314.
- B. Szczęśniak, J. Choma, M. Jaroniec, Gas adsorption properties of hybrid graphene-MOF materials, J. Colloid Interface Sci. 514 (2018) 801-813.
- D. Zhao, X.H. Liu, J.H. Guo, H.J. Xu, Y. Zhao, Y. Lu, W.Y. Sun, Porous metal- organic frameworks with chelating multiamine sites for selective adsorption and chemical conversion of carbon dioxide, Inorg. Chem. 57 (2018) 2695-2704.
- G. Zhang, H. Yang, H. Fei, Unusual missing linkers in an organosulfonate-based primitive-cubic (pcu)-Type metal-organic framework for CO 2 capture and conversion under ambient conditions, ACS Catal. 8 (2018) 2519-2525.
- C. Jin, S. Zhang, Z. Zhang, Y. Chen, Mimic Carbonic Anhydrase Using Metal- Organic Frameworks for CO 2 Capture and Conversion, Inorg. Chem. 57 (2018) 2169-2174.
- M. Mohamedali, H. Ibrahim, A. Henni, Incorporation of acetate-based ionic liquids into a zeolitic imidazolate framework (ZIF-8) as efficient sorbents for carbon dioxide capture, Chem. Eng. J. 334 (2018) 817-828.
- S. Kayal, A. Chakraborty, Activated carbon (type Maxsorb-III) and MIL-101(Cr) metal organic framework based composite adsorbent for higher CH 4 storage and CO 2 capture, Chem. Eng. J. 334 (2018) 780-788.
- M.A. Rodrigues, J. de, S. Ribeiro, E. de, S. Costa, J.L. de Miranda, H.C. Ferraz, Nanostructured membranes containing UiO-66 (Zr) and MIL-101 (Cr) for O 2 /N 2 and CO 2 /N 2 separation, Sep. Purif. Technol. 192 (2018) 491-500.
- Q.Q. Zhang, X.F. Liu, L. Ma, Y.S. Wei, Z.Y. Wang, H. Xu, S.Q. Zang, Remoulding a MOF's pores by auxiliary ligand introduction for stability improvement and highly selective CO 2 -capture, Chem. Commun. (Camb.) 54 (2018) 12029-12032.
- Y. Gong, Y. Tang, Z. Mao, X. Wu, Q. Liu, S. Hu, S. Xiong, X. Wang, Metal-organic framework derived nanoporous carbons with highly selective adsorption and separation of xenon, J. Mater. Chem. A 6 (2018) 13696-13704.
- H.F. Zhou, B. Liu, L. Hou, W.Y. Zhang, Y.Y. Wang, Rational construction of a stable Zn4O-based MOF for highly efficient CO 2 capture and conversion, Chem. Commun. (Camb.) 54 (2018) 456-459.
- B. Monteiro, A.R. Nabais, F.A. Almeida Paz, L. Cabrita, L.C. Branco, I. M. Marrucho, L.A. Neves, C.C.L. Pereira, Membranes with a low loading of Metal-Organic Framework-Supported Ionic Liquids for CO 2 /N 2 separation in CO 2 capture, Energy Technol. 5 (2017) 2158-2162.
- J. Yuan, H. Zhu, J. Sun, Y. Mao, G. Liu, W. Jin, Novel ZIF-300 mixed-matrix membranes for efficient CO 2 capture, ACS Appl. Mater. Interfaces 9 (2017) 38575-38583.
- H. Thakkar, S. Eastman, Q. Al-Naddaf, A.A. Rownaghi, F. Rezaei, 3D-printed metal-organic framework monoliths for gas adsorption processes, ACS Appl. Mater. Interfaces 9 (2017) 35908-35916.
- J. Shi, H. Cui, J. Xu, N. Yan, Y. Liu, S. Zhang, One-step synthesis of highly porous nitrogen doped carbon from the direct pyrolysis of potassium phthalimide for CO 2 adsorption, J. CO2 Util. 39 (2020).
- Z. Safaei Moghaddam, M. Kaykhaii, M. Khajeh, A.R. Oveisi, PCN-222 metal- organic framework: a selective and highly efficient sorbent for the extraction of aspartame from gum, juice, and diet soft drink before its spectrophotometric determination, BMC Chem. Biol. 14 (2020).
- H.M. Polat, S. Kavak, H. Kulak, A. Uzun, S. Keskin, CO 2 separation from flue gas mixture using [BMIM][BF 4 ]/MOF composites: Linking high-throughput computational screening with experiments, Chem. Eng. J. 394 (2020) 124916.
- P. Jiamjirangkul, T. Inprasit, V. Intasanta, A. Pangon, Metal organic framework- integrated chitosan/poly(vinyl alcohol) (PVA) nanofibrous membrane hybrids from green process for selective CO 2 capture and filtration, Chem. Eng. Sci. 221 (2020) 115650.
- C. Chen, X. Feng, Q. Zhu, R. Dong, R. Yang, Y. Cheng, C. He, Microwave-Assisted Rapid Synthesis of Well-Shaped MOF-74 (Ni) for CO 2 Efficient Capture, Inorg. Chem. 58 (2019) 2717-2728.
- H. Zhang, X. Wang, L. Wei, B. Meng, X. Tan, W. Jin, S. Liu, A simple seed- embedded method to prepare ZIF-8 membranes supported on flexible PESf hollow fibers, J. Ind. Eng. Chem. 72 (2019) 222-231.
- T. Rajkumar, D. Kukkar, K.H. Kim, J.R. Sohn, A. Deep, Cyclodextrin- metal-organic framework (CD-MOF): from synthesis to applications, J. Ind. Eng. Chem. 72 (2019) 50-66.
- M. Schlesinger, S. Schulze, M. Hietschold, M. Mehring, Evaluation of synthetic methods for microporous metal-organic frameworks exemplified by the competitive formation of [Cu 2 (btc) 3 (H 2 O) 3 ] and [Cu 2 (btc)(OH)(H 2 O)], Microporous Mesoporous Mater. 132 (2010) 121-127.
- C. Choi, R.L. Kadam, S. Gaikwad, K.S. Hwang, S. Han, Metal organic frameworks immobilized polyacrylonitrile fiber mats with polyethyleneimine impregnation for CO 2 capture, Microporous Mesoporous Mater. 296 (2020).
- K. Pirzadeh, K. Esfandiari, A.A. Ghoreyshi, M. Rahimnejad, CO 2 and N 2 adsorption and separation using aminated UiO-66 and Cu 3 (BTC) 2 : A comparative study, Korean J. Chem. Eng. 37 (2020) 513-524.
- B. Szczęśniak, J. Choma, Graphene-containing microporous composites for selective CO 2 adsorption, Microporous Mesoporous Mater. 292 (2020).
- S. Gaikwad, S.J. Kim, S. Han, CO 2 capture using amine-functionalized bimetallic MIL-101 MOFs and their stability on exposure to humid air and acid gases, Microporous Mesoporous Mater. 277 (2019) 253-260.
- J. Cheng, N. Liu, L. Hu, Y. Li, Y. Wang, J. Zhou, Polyethyleneimine entwine thermally-treated Zn/Co zeolitic imidazolate frameworks to enhance CO 2 adsorption, Chem. Eng. J. 364 (2019) 530-540.
- J.H. Kang, T.U. Yoon, S.Y. Kim, M.B. Kim, H.J. Kim, H.C. Yang, Y.S. Bae, Extraordinarily selective adsorption of CO 2 over N 2 in a polyethyleneimine- impregnated NU-1000 material, Microporous Mesoporous Mater. 281 (2019) 84-91.
- A. Rehman, S. Farrukh, A. Hussain, X. Fan, E. Pervaiz, Adsorption of CO 2 on amine-functionalized green metal-organic framework: an interaction between amine and CO 2 molecules, Environ. Sci. Pollut. Res. 26 (2019) 36214-36225.
- S. Shin, D.K. Yoo, Y.S. Bae, S.H. Jhung, Polyvinylamine-loaded metal-organic framework MIL-101 for effective and selective CO 2 adsorption under atmospheric or lower pressure, Chem. Eng. J. 389 (2020).
- L. Xu, C.Y. Xing, D. Ke, L. Chen, Z.J. Qiu, S.L. Zeng, B.J. Li, S. Zhang, Amino- functionalized β-Cyclodextrin to construct green metal-organic framework materials for CO 2 capture, ACS Appl. Mater. Interfaces 12 (2020) 3032-3041.
- A. Koutsianos, E. Kazimierska, A.R. Barron, M. Taddei, E. Andreoli, A new approach to enhancing the CO 2 capture performance of defective UiO-66: via post-synthetic defect exchange, Dalton Trans. 48 (2019) 3349-3359.
- T. He, Y. Xiao, Q. Zhao, M. Zhou, G. He, Ultramicroporous metal-organic framework Qc-5-Cu for highly selective adsorption of CO 2 from C 2 H 4 stream, Ind. Eng. Chem. Res. 59 (2020) 3153-3161.
- H.G. Zhen, H. Mao, I.U. Haq, S.H. Li, A. Ahmad, Z.P. Zhao, In-situ SIFSIX-3-Cu growth into melamine formaldehyde sponge monolith for CO 2 efficient capture, Sep. Purif. Technol. 233 (2020).
- Z.S. Wang, M. Li, Y.L. Peng, Z. Zhang, W. Chen, X.C. Huang, An ultrastable metal azolate framework with binding pockets for optimal carbon dioxide capture, Angew. Chemie -Int. Ed. 58 (2019) 16071-16076.
- M. Konni, S. Doddi, A.S. Dadhich, S.B. Mukkamala, Adsorption of CO2 by hierarchical structures of f-MWCNTs@Zn/Co-ZIF and N-MWCNTs@Zn/Co-ZIF prepared through in situ growth of ZIFs in CNTs, Surf. Interfaces 12 (2018) 20-25.
- D.K. Yoo, T.U. Yoon, Y.S. Bae, S.H. Jhung, Metal-organic framework MIL-101 loaded with polymethacrylamide with or without further reduction: effective and selective CO 2 adsorption with amino or amide functionality, Chem. Eng. J. 380 (2020).
- S. Wang, J. Cui, S. Zhang, X. Xie, W. Xia, Enhancement thermal stability and CO 2 adsorption property of ZIF-8 by pre-modification with polyaniline, Mater. Res. Express 7 (2020).
- M. Ghahramaninezhad, F. Mohajer, M. Niknam Shahrak, Improved CO 2 capture performances of ZIF-90 through sequential reduction and lithiation reactions to form a hard/hard structure, Front. Chem. Sci. Eng. 14 (2020) 425-435.
- Y. Cao, H. Zhang, F. Song, T. Huang, J. Ji, Q. Zhong, W. Chu, Q. Xu, UiO-66-NH 2 / GO composite: synthesis, characterization and CO 2 adsorption performance, Materials (Basel). 11 (2018) 589.
- S. Mutyala, Y.D. Yu, W.G. Jin, Z.S. Wang, D.Y. Zheng, C.R. Ye, B. Luo, CO 2 capture using amine incorporated UiO-66 in atmospheric pressure, J. Porous Mater. 26 (2019) 1831-1838.
- H. Molavi, A. Eskandari, A. Shojaei, S.A. Mousavi, Enhancing CO 2 /N 2 adsorption selectivity via post-synthetic modification of NH 2 -UiO-66(Zr), Microporous Mesoporous Mater. 257 (2018) 193-201.
- S. Ullah, M.A. Bustam, A.G. Al-Sehemi, M.A. Assiri, F.A. Abdul Kareem, A. Mukhtar, M. Ayoub, G. Gonfa, Influence of post-synthetic graphene oxide (GO) functionalization on the selective CO 2 /CH 4 adsorption behavior of MOF-200 at different temperatures; an experimental and adsorption isotherms study, Microporous Mesoporous Mater. 296 (2020) 110002.
- H.N. Abdelhamid, Zinc hydroxide nitrate nanosheets conversion into hierarchical zeolitic imidazolate frameworks nanocomposite and their application for CO2 sorption, Mater. Today Chem. 15 (2020).
- X. Mu, S. Liu, Y. Chen, U.K. Cheang, M.W. George, T. Wu, Mechanistic and experimental study of the formation of MoS2/HKUST-1 core-shell composites on MoS 2 quantum dots with an enhanced CO 2 adsorption capacity, Ind. Eng. Chem. Res. 59 (2020) 5808-5817.
- D. Alvarado-Alvarado, J.H. González-Estefan, J.G. Flores, J.R. Álvarez, J. Aguilar- Pliego, A. Islas-Jácome, G. Chastanet, E. González-Zamora, H.A. Lara-García, B. Alcántar-Vázquez, M. Gonidec, I.A. Ibarra, Water adsorption properties of Fe (pz)[Pt(CN) 4 ] and the capture of CO 2 and CO, Organometallics. 39 (2020) 949-955.
- G. Han, Q. Qian, K. Mizrahi Rodriguez, Z.P. Smith, Hydrothermal synthesis of Sub-20 nm amine-functionalized MIL-101(Cr) nanoparticles with high surface area and enhanced CO 2 uptake, Ind. Eng. Chem. Res. 59 (2020) 7888-7900.
- Z. Hu, A. Nalaparaju, Y. Peng, J. Jiang, D. Zhao, Modulated hydrothermal synthesis of UiO-66(Hf)-Type metal-organic frameworks for optimal carbon dioxide separation, Inorg. Chem. 55 (2016) 1134-1141.
- Z. Bian, X. Zhu, T. Jin, J. Gao, J. Hu, H. Liu, Ionic liquid-assisted growth of Cu 3 (BTC) 2 nanocrystals on graphene oxide sheets: Towards both high capacity and high rate for CO 2 adsorption, Microporous Mesoporous Mater. 200 (2014) 159-164.
- K.M. Elsabawy, A.M. Fallatah, Ultrafast facile one pot synthesis of meso- tetraphenyl-Porphinato-Cu(II) metal-Organic frameworks (MOFs) for CO2 capture, J. Inorg, Organomet. Polym. Mater. 28 (2018) 2865-2870.
- K.M. Elsabawy, A.M. Fallatah, Synthesis of newly wings like structure non- crystalline Ni++-1,3,5-tribenzyl-1,3,5-triazine-2,4,6-(1H,3H,5H)-trione coordinated MOFs for CO 2 -Capture, J. Mol. Struct. 1177 (2019) 255-259.
- Y. Zhang, Y. Zhang, X. Wang, J. Yu, B. Ding, Ultrahigh Metal-Organic Framework Loading and Flexible Nanofibrous Membranes for Efficient CO 2 Capture with Long-Term, Ultrastable Recyclability, ACS Appl. Mater. Interfaces 10 (2018) 34802-34810.
- L.J. Barrios-Vargas, J.G. Ruiz-Montoya, B. Landeros-Rivera, J.R. Álvarez, D. Alvarado-Alvarado, R. Vargas, A. Martínez, E. González-Zamora, L.M. Cáceres, J.C. Morales, I.A. Ibarra, Confined benzene within InOF-1: contrasting CO 2 and SO 2 capture behaviours, Dalton Trans. 49 (2020) 2786-2793.
- H.R. Abid, Z.H. Rada, Y. Li, H.A. Mohammed, Y. Wang, S. Wang, H. Arandiyan, X. Tan, S. Liu, Boosting CO2 adsorption and selectivity in metal-organic frameworks of MIL-96(Al): via second metal Ca coordination, RSC Adv. 10 (2020) 8130-8139.
- Z. Li, H. Chen, C. Chen, Q. Guo, X. Li, Y. He, H. Wang, N. Feng, H. Wan, G. Guan, High dispersion of polyethyleneimine within mesoporous UiO-66s through pore size engineering for selective CO 2 capture, Chem. Eng. J. 375 (2019).
- Y. Li, X. Zhang, J. Lan, P. Xu, J. Sun, Porous Zn(Bmic)(AT) MOF with abundant amino groups and open metal sites for efficient capture and transformation of CO 2 , Inorg. Chem. 58 (2019) 13917-13926.
- R. Vismara, G. Tuci, A. Tombesi, K.V. Domasevitch, C. Di Nicola, G. Giambastiani, M.R. Chierotti, S. Bordignon, R. Gobetto, C. Pettinari, A. Rossin, S. Galli, Tuning Carbon Dioxide Adsorption Affinity of Zinc(II) MOFs by Mixing Bis(pyrazolate) Ligands with N-Containing Tags, ACS Appl. Mater. Interfaces 11 (2019) 26956-26969.
- C. Lv, W. Li, Y. Zhou, J. Li, Z. Lin, A new porous Ca(II)-organic framework with acylamide decorated pores for highly efficient CO2 capture, Inorg. Chem. Commun. 99 (2019) 40-43.
- Y. Chen, Z. Qiao, J. Huang, H. Wu, J. Xiao, Q. Xia, H. Xi, J. Hu, J. Zhou, Z. Li, Unusual moisture-enhanced CO 2 capture within microporous PCN-250 frameworks, ACS Appl. Mater. Interfaces 10 (2018) 38638-38647.
- Z. Lin, Z. Lv, X. Zhou, H. Xiao, J. Wu, Z. Li, Postsynthetic Strategy to Prepare ACN@Cu-BTCs with Enhanced Water Vapor Stability and CO2/CH4 Separation Selectivity, Ind. Eng. Chem. Res. 57 (2018) 3765-3772.
- L.A. Darunte, Y. Terada, C.R. Murdock, K.S. Walton, D.S. Sholl, C.W. Jones, Monolith-supported amine-functionalized Mg2(dobpdc) adsorbents for CO2 capture, ACS Appl. Mater. Interfaces 9 (2017) 17042-17050.
- M.C. Singo, X.C. Molepo, O.O. Oluwasina, M.O. Daramola, Chitosan-impregnated sod-metal organic frameworks (sod-ZMOF) for CO2 capture: synthesis and performance evaluation. Energy Procedia, 2017, pp. 2429-2440.
- Y. Chen, D. Lv, J. Wu, J. Xiao, H. Xi, Q. Xia, Z. Li, A new MOF-505@GO composite with high selectivity for CO 2 /CH 4 and CO 2 /N 2 separation, Chem. Eng. J. 308 (2017) 1065-1072.
- A. Masala, J.G. Vitillo, G. Mondino, C.A. Grande, R. Blom, M. Manzoli, M. Marshall, S. Bordiga, CO 2 capture in dry and wet conditions in UTSA-16 metal- organic framework, ACS Appl. Mater. Interfaces 9 (2017) 455-463.
- H. Li, Z. Lin, X. Zhou, X. Wang, Y. Li, H. Wang, Z. Li, Ultrafast room temperature synthesis of novel composites Imi@Cu-BTC with improved stability against moisture, Chem. Eng. J. 307 (2017) 537-543.
- P.M. Bhatt, Y. Belmabkhout, A. Cadiau, K. Adil, O. Shekhah, A. Shkurenko, L. J. Barbour, M. Eddaoudi, A fine-tuned fluorinated MOF addresses the needs for trace CO 2 removal and air capture using physisorption, J. Am. Chem. Soc. 138 (2016) 9301-9307.
- S. Seth, G. Savitha, S. Jhulki, J.N. Moorthy, Diverse metal-organic materials (MOMs) based on 9,9 ′ -Bianthryl-Dicarboxylic acid linker: luminescence properties and CO 2 capture, Cryst. Growth Des. 16 (2016) 2024-2032.
- S. Aarti, A. Bhadauria, S. Nanoti, S. Dasgupta, P. Divekar, R. Gupta, Chauhan, -polyethyleneimine: an efficient MOF composite for effective CO 2 separation, RSC Adv. 6 (2016) 93003-93009.
- S. Nandi, P. De Luna, T.D. Daff, J. Rother, M. Liu, W. Buchanan, A.I. Hawari, T. K. Woo, R. Vaidhyanathan, A single-ligand ultra-microporous MOF for precombustion CO 2 capture and hydrogen purification, Sci. Adv. 1 (2015).
- Y. Yang, X. Yan, X. Hu, R. Feng, M. Zhou, W. Cui, Development of zeolitic imidazolate framework-67 functionalized Co-Al LDH for CO 2 adsorption, Colloids Surfaces A Physicochem. Eng. Asp. 552 (2018) 16-23.
- Y. Te Liao, S. Dutta, C.H. Chien, C.C. Hu, F.K. Shieh, C.H. Lin, K.C.W. Wu, Synthesis of mixed-ligand zeolitic imidazolate framework (ZIF-8-90) for CO 2 adsorption, J. Inorg. Organomet. Polym. Mater. 25 (2015) 251-258.
- Q.Q. Dang, Y.F. Zhan, L.N. Duan, X.M. Zhang, A pyridyl-decorated MOF-505 analogue exhibiting hierarchical porosity, selective CO 2 capture and catalytic capacity, Dalton Trans. 44 (2015) 20027-20031.
- B. Zheng, L. Huang, X. Cao, S. Shen, H. Cao, C. Hang, W. Zeng, Z. Wang, A highly porous acylamide decorated MOF-505 analogue exhibiting high and selective CO2 gas uptake capability, CrystEngComm. 20 (2018) 1874-1881.
- Z. Hu, Y. Wang, S. Farooq, D. Zhao, A highly stable metal-organic framework with optimum aperture size for CO 2 capture, AIChE J. 63 (2017) 4103-4114.
- S. Singh Dhankhar, N. Sharma, S. Kumar, T.J. Dhilip Kumar, C.M. Nagaraja, Rational design of a bifunctional, two-fold interpenetrated ZnII-Metal-Organic framework for selective adsorption of CO2 and efficient aqueous phase sensing of 2,4,6-Trinitrophenol, Chem. -A Eur. J. 23 (2017) 16204-16212.
- Y.J. Xiao, C.Y. Sun, G.C. Yang, L. Zhao, Z.M. Su, A versatile metal-organic framework for carbon dioxide capture and modulating fluorescence properties of Alq3, Inorg. Chem. Commun. 46 (2014) 248-250.
- S. Ullah, A.M. Shariff, M.A. Bustam, A.E.I. Elkhalifah, G. Murshid, N. Riaz, B. Shimekit, Effect of modified MIL-53 with multi-wall carbon nanotubes and nano fibers on CO 2 adsorption. Appl. Mech. Mater., 2014, pp. 870-873.
- S. Ullah, M.A. Bustam, A.E.I. Elkhalifah, N. Riaz, G. Gonfa, A.M. Shariff, Synthesis, CO 2 Adsorption Performance of Modified MIL-101 with Multi-Wall Carbon Nanotubes, Adv. Mater. Res. 1133 (2016) 486-490.
- R.G. Miller, P.D. Southon, C.J. Kepert, S. Brooker, Commensurate CO 2 capture, and shape selectivity for HCCH over H 2 CCH 2 , in zigzag channels of a robust CuI (CN)(L) metal-organic framework, Inorg. Chem. 55 (2016) 6195-6200.
- J.S. Yeon, W.R. Lee, N.W. Kim, H. Jo, H. Lee, J.H. Song, K.S. Lim, D.W. Kang, J. G. Seo, D. Moon, B. Wiers, C.S. Hong, Homodiamine-functionalized metal-organic frameworks with a MOF-74-type extended structure for superior selectivity of CO 2 over N 2 , J. Mater. Chem. A 3 (2015) 19177-19185.
- S. Gadipelli, Z.X. Guo, Tuning of ZIF-Derived carbon with high activity, nitrogen functionality, and yield -a case for superior CO 2 capture, ChemSusChem. 8 (2015) 2123-2132.
- P.T.K. Nguyen, H.T.D. Nguyen, H.Q. Pham, J. Kim, K.E. Cordova, H. Furukawa, Synthesis and Selective CO 2 Capture Properties of a Series of Hexatopic Linker- Based Metal-Organic Frameworks, Inorg. Chem. 54 (2015) 10065-10072.
- X. Wang, M. Chen, M. Du, A clear insight into the distinguishing CO 2 capture by two isostructural DyIII-Carboxylate coordination frameworks, Inorg. Chem. 55 (2016) 6352-6354.
- T.K. Yan, A. Nagai, W. Michida, K. Kusakabe, S.B. Yusup, Crystal growth of cyclodextrin-based metal-organic framework for carbon dioxide capture and separation, in: Procedia Eng. (2016) 30-34.
- Q. Mu, H. Wang, L. Li, C. Wang, Y. Wang, X. Zhao, Enhanced CO 2 Adsorption Affinity in a NbO-type MOF Constructed from a Low-Cost Diisophthalate Ligand with a Piperazine-Ring Bridge, Chem. -An Asian J. 10 (2015) 1864-1869.
- G. Zhang, G. Wei, Z. Liu, S.R.J. Oliver, H. Fei, A robust sulfonate-based metal- organic framework with permanent porosity for efficient CO 2 capture and conversion, Chem. Mater. 28 (2016) 6276-6281.
- C.Y. Gao, H.R. Tian, J. Ai, L.J. Li, S. Dang, Y.Q. Lan, Z.M. Sun, A microporous Cu- MOF with optimized open metal sites and pore spaces for high gas storage and active chemical fixation of CO 2 , Chem. Commun. (Camb.) 52 (2016) 11147-11150.
- H. Li, K. Wang, D. Feng, Y.P. Chen, W. Verdegaal, H.C. Zhou, Incorporation of Alkylamine into metal-Organic frameworks through a brønsted acid-Base reaction for CO 2 capture, Chem. Sus. Chem. (2016) 2832-2840.
- P.L. Llewellyn, M. Garcia-Rates, L. Gaberová, S.R. Miller, T. Devic, J.C. Lavalley, S. Bourrelly, E. Bloch, Y. Filinchuk, P.A. Wright, C. Serre, A. Vimont, G. Maurin, Structural origin of unusual CO 2 adsorption behavior of a small-pore aluminum bisphosphonate MOF, J. Phys. Chem. C. 119 (2015) 4208-4216.
- L.L. Dang, X.J. Zhang, L. Zhang, J.Q. Li, F. Luo, X.F. Feng, Photo-responsive azo MOF exhibiting high selectivity for CO 2 and xylene isomers, J. Coord. Chem. 69 (2016) 1179-1187.
- D. Alezi, Y. Belmabkhout, M. Suyetin, P.M. Bhatt, L.J. Weseliński, V. Solovyeva, K. Adil, I. Spanopoulos, P.N. Trikalitis, A.H. Emwas, M. Eddaoudi, MOF crystal chemistry paving the way to gas storage needs: aluminum-based soc -MOF for CH4, O 2 , and CO 2 storage, J. Am. Chem. Soc. 137 (2015) 13308-13318.
- N. Ding, H. Li, X. Feng, Q. Wang, S. Wang, L. Ma, J. Zhou, B. Wang, Partitioning MOF-5 into confined and hydrophobic compartments for carbon capture under humid conditions, J. Am. Chem. Soc. 138 (2016) 10100-10103.
- H.L. Wang, H. Yeh, Y.C. Chen, Y.C. Lai, C.Y. Lin, K.Y. Lu, R.M. Ho, B.H. Li, C. H. Lin, D.H. Tsai, Thermal stability of metal-organic frameworks and encapsulation of CuO nanocrystals for highly active catalysis, ACS Appl. Mater. Interfaces 10 (2018) 9332-9341.
- M. Mohamedali, D. Nath, H. Ibrahim, A. Henni, Review of recent developments in CO 2 capture using solid materials: metal organic frameworks (MOFs). Greenh. Gases, 2016.
- J. López-Cabrelles, S. Mañas-Valero, I.J. Vitórica-Yrezábal, P.J. Bereciartua, J. A. Rodríguez-Velamazán, J.C. Waerenborgh, B.J.C. Vieira, D. Davidovikj, P. G. Steeneken, H.S.J. Van der Zant, G. Mínguez Espallargas, E. Coronado, Isoreticular two-dimensional magnetic coordination polymers prepared through pre-synthetic ligand functionalization, Nat. Chem. 10 (2018) 1001-1007.
- Y. Qin, X. Han, Y. Li, A. Han, W. Liu, H. Xu, J. Liu, Hollow mesoporous metal-Organic frameworks with enhanced diffusion for highly efficient catalysis, ACS Catal. 10 (2020) 5973-5978.
- S. Cavenati, C.A. Grande, A.E. Rodrigues, Separation of CH 4 / CO 2 / N 2 mixtures by layered pressure swing adsorption for upgrade of natural gas, Chem. Eng. Sci. 61 (2006) 3893-3906.
- R. Ben-Mansour, N.A.A. Qasem, An efficient temperature swing adsorption (TSA) process for separating CO 2 from CO 2 /N 2 mixture using Mg-MOF-74, Energy Convers. Manage. 156 (2018) 10-24.
- M. Wang, S. Zhou, S. Cao, Z. Wang, S. Liu, S. Wei, Y. Chen, X. Lu, Stimulus- responsive adsorbent materials for CO 2 capture and separation, J. Mater. Chem. A 8 (2020) 10519-10533.
- H. Li, M.M. Sadiq, K. Suzuki, P. Falcaro, A.J. Hill, M.R. Hill, Magnetic induction framework synthesis: a general route to the controlled growth of metal-organic frameworks, Chem. Mater. 29 (2017) 6186-6190.
- Q. Sun, G. Qin, Y. Ma, W. Wang, P. Li, A. Du, Z. Li, Electric field controlled CO 2 capture and CO 2 /N 2 separation on MoS 2 monolayers, Nanoscale. 9 (2017) 19-24.
- Y.X. Ma, Z.J. Li, L. Wei, S.Y. Ding, Y.B. Zhang, W. Wang, A dynamic three- dimensional covalent organic framework, J. Am. Chem. Soc. 139 (2017) 4995-4998.
- Y. Jiang, P. Tan, S.C. Qi, X.Q. Liu, J.H. Yan, F. Fan, L.B. Sun, Metal-organic frameworks with target-specific active sites switched by photoresponsive motifs: efficient adsorbents for tailorable CO 2 capture, Angew. Chemie -Int. Ed. 58 (2019) 6600-6604.
- R. Huang, M.R. Hill, R. Babarao, N.V. Medhekar, CO 2 Adsorption in Azobenzene Functionalized Stimuli Responsive Metal-Organic Frameworks, J. Phys. Chem. C. 120 (2016) 16658-16667.
- J. Park, B.L. Suh, J. Kim, Computational design of a photoresponsive metal-Organic framework for post combustion carbon capture, J. Phys. Chem. C. 124 (2020) 13162-13167.
- N. Prasetya, B.P. Ladewig, New Azo-DMOF-1 MOF as a photoresponsive low- energy CO 2 adsorbent and its exceptional CO 2 /N 2 separation performance in mixed matrix membranes, ACS Appl. Mater. Interfaces 10 (2018) 34291-34301.
- L. Cheng, Y. Jiang, S.C. Qi, W. Liu, S.F. Shan, P. Tan, X.Q. Liu, L.B. Sun, Controllable adsorption of CO 2 on smart adsorbents: an interplay between amines and photoresponsive molecules, Chem. Mater. 30 (2018) 3429-3437.
- R. Haldar, L. Heinke, C. Wöll, Advanced photoresponsive materials using the metal-Organic framework approach, Adv. Mater. 32 (2020) 1905227.
- D.G. Patel, I.M. Walton, J.M. Cox, C.J. Gleason, D.R. Butzer, J.B. Benedict, Photoresponsive porous materials: the design and synthesis of photochromic diarylethene-based linkers and a metal-organic framework, Chem. Commun. (Camb.) 50 (2014) 2653-2656.
- H. Li, M.R. Hill, Low-energy CO 2 release from metal-organic frameworks triggered by external stimuli, Acc. Chem. Res. 50 (2017) 778-786.
- H. Li, M.M. Sadiq, K. Suzuki, C. Doblin, S. Lim, P. Falcaro, A.J. Hill, M.R. Hill, MaLISA -a cooperative method to release adsorbed gases from metal-organic frameworks, J. Mater. Chem. A 4 (2016) 18757-18762.
- R. Lyndon, K. Konstas, A.W. Thornton, A.J. Seeber, B.P. Ladewig, M.R. Hill, Visible light-triggered capture and release of CO 2 from stable metal organic frameworks, Chem. Mater. 27 (2015) 7882-7888.
- M. Wang, S. Zhou, S. Cao, Z. Wang, S. Liu, S. Wei, Y. Chen, X. Lu, Stimulus- responsive adsorbent materials for CO 2 capture and separation, J. Mater. Chem. A 8 (2020) 10519-10533.
- M.A. Al-Ghouti, D.A. Da'ana, Guidelines for the use and interpretation of adsorption isotherm models: a review, J. Hazard. Mater. 393 (2020) 122383.
- J. Slcopp, Derivation of the freundlich adsorption isotherm from kinetics, J. Chem. Educ. 86 (2009) 1341.
- G. Morse, R. Jones, J. Thibault, F.H. Tezel, Neural network modelling of adsorption isotherms, Adsorption. 17 (2011) 303-309.
- N. Tzabar, H.J.M. ter Brake, Adsorption isotherms and Sips models of nitrogen, methane, ethane, and propane on commercial activated carbons and polyvinylidene chloride, Adsorption. 22 (2016) 901-914.
- G. Alonso, D. Bahamon, F. Keshavarz, X. Giménez, P. Gamallo, R. Sayós, Density functional theory-based adsorption isotherms for pure and flue gas mixtures on Mg-MOF-74. Application in CO 2 capture swing adsorption processes, J. Phys. Chem. C. 122 (2018) 3945-3957.
- T.M. McDonald, D.M. D'Alessandro, R. Krishna, J.R. Long, Enhanced carbon dioxide capture upon incorporation of N,N ′ -dimethylethylenediamine in the metal-organic framework CuBTTri, Chem. Sci. 2 (2011) 2022-2028.
- D. Saha, Z. Bao, F. Jia, S. Deng, Adsorption of CO 2 , CH 4 , N 2 O, and N 2 on MOF-5, MOF-177, and zeolite 5A, Environ. Sci. Technol. 44 (2010) 1820-1826.
- J.A. Mason, K. Sumida, Z.R. Herm, R. Krishna, J.R. Long, Evaluating metal- organic frameworks for post-combustion carbon dioxide capture via temperature swing adsorption, Energy Environ. Sci. 4 (2011) 3030-3040.
- M. Arjmandi, M. Pakizeh, An experimental study of H 2 and CO 2 adsorption behavior of C-MOF-5 and T-MOF-5: a complementary study, Brazilian J. Chem. Eng. (2016).
- A. Policicchio, Y. Zhao, Q. Zhong, R.G. Agostino, T.J. Bandosz, Cu-BTC/Aminated graphite oxide composites As high-efficiency CO2 capture media, ACS Appl. Mater. Interfaces 6 (2014) 101-108.
- F. Yulia, V.J. Utami, A. Nasruddin, Zulys, Synthesis, characterizations, and adsorption isotherms of CO 2 on chromium terephthalate (MIL-101) metal-organic frameworks (MOF), Int. J. Technol. 10 (2019) 1427-1436.
- M. Aghajanloo, A.M. Rashidi, Synthesis of zinc-organic frameworks nano adsorbent and their application for methane adsorption, J. Chem. Eng. Process Technol. (2014).
- P. Brandt, A. Nuhnen, M. Lange, J. Möllmer, O. Weingart, C. Janiak, Metal- organic frameworks with potential application for SO 2 separation and flue gas desulfurization, ACS Appl. Mater. Interfaces 11 (2019) 17350-17358.
- V. Thi Thanh Chau, H. Thi MinhThanh, P. Dinh Du, T. Thanh Tam Toan, T. Ngoc Tuyen, T. Xuan Mau, D. Quang Khieu, Metal-organic Framework-101 (MIL-101): synthesis, kinetics, thermodynamics, and equilibrium isotherms of remazol deep black RGB adsorption, J. Chem. 2018 (2018) 8616921.
- J. Schell, N. Casas, D. Marx, R. Blom, M. Mazzotti, Comparison of commercial and new adsorbent materials for pre-combustion CO 2 capture by pressure swing adsorption, in: Energy Procedia, vol. 37, 2013, pp. 167-174.
- L. Zhao, X. Duan, M.R. Azhar, H. Sun, X. Fang, S. Wang, Selective adsorption of rare earth ions from aqueous solution on metal-organic framework HKUST-1, Chem. Eng. J. Adv. (2020) 100009.
- J. Yu, L.H. Xie, J.R. Li, Y. Ma, J.M. Seminario, P.B. Balbuena, CO 2 Capture and Separations Using MOFs: Computational and Experimental Studies, Chem. Rev. 117 (2017) 9674-9754.
- K.S. Walton, A.R. Millward, D. Dubbeldam, H. Frost, J.J. Low, O.M. Yaghi, R. Q. Snurr, Understanding inflections and steps in carbon dioxide adsorption isotherms in metal-organic frameworks, J. Am. Chem. Soc. 130 (2008) 406-407.
- Q. Yang, C. Zhong, J.F. Chen, Computational study of CO 2 storage in metal- organic frameworks, J. Phys. Chem. C. 112 (2008) 1562-1569.
- A. Pianwanit, C. Kritayakornupong, A. Vongachariya, N. Selphusit, T. Ploymeerusmee, T. Remsungnen, D. Nuntasri, S. Fritzsche, S. Hannongbua, The optimal binding sites of CH 4 and CO 2 molecules on the metal-organic framework MOF-5: ONIOM calculations, Chem. Phys. 349 (2008) 77-82.
- B.K. Chang, P.D. Bristowe, A.K. Cheetham, Computational studies on the adsorption of CO 2 in the flexible perfluorinated metal-organic framework zinc 1,2-bis(4-pyridyl)ethane tetrafluoroterephthalate, Phys. Chem. Chem. Phys. 15 (2013) 176-182.
- X.J. Hou, P. He, H. Li, X. Wang, Understanding the adsorption mechanism of C 2 H 2 , CO 2 , and CH 4 in isostructural metal-organic frameworks with coordinatively unsaturated metal sites, J. Phys. Chem. C. 117 (2013) 2824-2834.
- W. Morris, N. He, K.G. Ray, P. Klonowski, H. Furukawa, I.N. Daniels, Y. A. Houndonougbo, M. Asta, O.M. Yaghi, B.B. Laird, A combined experimental- computational study on the effect of topology on carbon dioxide adsorption in zeolitic imidazolate frameworks, J. Phys. Chem. C. 116 (2012) 24084-24090.
- Y.S. Bae, D. Dubbeldam, A. Nelson, K.S. Walton, J.T. Hupp, R.Q. Snurr, Strategies for characterization of large-pore metal-organic frameworks by combined experimental and computational methods, Chem. Mater. 21 (2009) 4768-4777.
- M. Zhou, S.G. Khokarale, M. Balsamo, J.-P. Mikkola, J. Hedlund, Oligoamine ionic liquids supported on mesoporous microspheres for CO 2 separation with good sorption kinetics and low cost, J. CO 2 Util. 39 (2020) 101186.
- M. Yu, D.C. Miller, L.T. Biegler, Dynamic reduced order models for simulating bubbling fluidized bed adsorbers, Ind. Eng. Chem. Res. 54 (2015) 6959-6974.
- W. Demmer, D. Nussbaumer, Large-scale membrane adsorbers, J. Chromatogr. A 852 (1999) 73-81.
- B. Sreenivasulu, D.V. Gayatri, I. Sreedhar, K.V. Raghavan, A journey into the process and engineering aspects of carbon capture technologies, Renewable Sustainable Energy Rev. 41 (2015) 1324-1350.
- I. Sreedhar, R. Vaidhiswaran, B.M. Kamani, A. Venugopal, Process and engineering trends in membrane based carbon capture, Renewable Sustainable Energy Rev. 68 (2017) 659-684.
- H. Jiang, Q. Wang, H. Wang, Y. Chen, M. Zhang, Temperature effect on the morphology and catalytic performance of Co-MOF-74 in low-temperature NH3- SCR process, Catal. Commun. 80 (2016) 24-27.
- T.A. Mulyati, R. Ediati, A. Rosyidah, Influence of solvothermal temperatures and times on crystallinity and morphology of MOF-5, Indones. J. Chem. 15 (2015) 101-107.
- R. Seetharaj, P.V. Vandana, P. Arya, S. Mathew, Dependence of solvents, pH, molar ratio and temperature in tuning metal organic framework architecture, Arab. J. Chem. 12 (2019) 295-315.
- B. Liu, K. Vellingiri, S.H. Jo, P. Kumar, Y.S. Ok, K.H. Kim, Recent advances in controlled modification of the size and morphology of metal-organic frameworks, Nano Res. 11 (2018) 4441-4467.
- H. Guo, Y. Zhu, S. Wang, S. Su, L. Zhou, H. Zhang, Combining coordination modulation with acid-base adjustment for the control over size of metal-organic frameworks, Chem. Mater. 24 (2012) 444-450.
- R. Abazari, A. Reza Mahjoub, A.M.Z. Slawin, C.L. Carpenter-Warren, Morphology- and size-controlled synthesis of a metal-organic framework under ultrasound irradiation: an efficient carrier for pH responsive release of anti-cancer drugs and their applicability for adsorption of amoxicillin from aqueous solution, Ultrason. Sonochem. 42 (2018) 594-608.
- R.S. Forgan, Modulated self-assembly of metal-organic frameworks, Chem. Sci. 11 (2020) 4546-4562.
- M.H. Rosnes, F.S. Nesse, M. Opitz, P.D.C. Dietzel, Morphology control in modulated synthesis of metal-organic framework CPO-27, Microporous Mesoporous Mater. 275 (2019) 207-213.
- M.Y. Guo, X. Zhang, L. Zhao, Y.K. Li, D.Y. Chen, G.W. Yang, Q.Y. Li, Regulation of deprotonation of 3,3-di(1H-tetrazol-5-yl)pentanedioic acid: solvothermal synthesis of La(III) and heterometallic La(III)/Cu(II) compounds for ablation of A549 cells, J. Solid State Chem. 259 (2018) 104-109.
- S. Wang, Y. Lv, Y. Yao, H. Yu, G. Lu, Modulated synthesis of monodisperse MOF-5 crystals with tunable sizes and shapes, Inorg. Chem. Commun. 93 (2018) 56-60.
- S. Hu, M. Liu, K. Li, C. Song, G. Zhang, X. Guo, Surfactant-assisted synthesis of hierarchical NH 2 -MIL-125 for the removal of organic dyes, RSC Adv. 7 (2017) 581-587.
- C. Altintas, G. Avci, H. Daglar, A. Nemati Vesali Azar, S. Velioglu, I. Erucar, S. Keskin, Database for CO 2 separation performances of MOFs based on computational materials screening, ACS Appl. Mater. Interfaces 10 (2018) 17257-17268.
- C. Altintas, S. Keskin, Computational screening of MOFs for C2H6/C2H4 and C 2 H 6 /CH 4 separations, Chem. Eng. Sci. 139 (2016) 49-60.
- G. Avci, S. Velioglu, S. Keskin, High-throughput screening of MOF adsorbents and membranes for H2 purification and CO 2 capture, ACS Appl. Mater. Interfaces 10 (2018) 33693-33706.
- S. Li, Y.G. Chung, R.Q. Snurr, High-throughput screening of metal-organic frameworks for CO 2 capture in the presence of water, Langmuir. 32 (2016) 10368-10376.