Modular Resolutions by Polyseries
Abstract
We study the modular resolution method using a new tool called a polyserie, introduced by Prof. Wildberger N.J. \& Rubine D. in their recent article \cite{wildberger2025hyper}. In the present article we try to prove an equivalence theorem of the existence and the uniqueness of the solutions of the modular quadratic equations of the form: \begin{equation*} x^{2}+a.x+u\equiv 0\text{ }\left( \mathrm{mod}\text{ }u^{n}\right) , \end{equation*}% by using the same recurrence formula introduced in \cite{wildberger2025hyper} between the Catalan sequence terms: \begin{equation*} C_{n+1}=\sum_{k=0}^{n}C_{k}.C_{n-k,} \end{equation*}% and by introducing the following notions: Wildberger's polynumber sequences (polynomials), binomial Chu-Vandermonde identity, truncated polyseries and finally modular resolution as application.
References (21)
- H. Cohen. A Course in Computational Algebraic Number Theory. Springer, 1993.
- F. Q. Gouvea. p-adic Numbers: An Introduction. Springer, 1997.
- G. H. Hardy and E. M. Wright. An Introduction to the Theory of Numbers. Oxford University Press, 1979.
- R. Lidl and H. Niederreiter. Finite Fields. Cambridge University Press, 1997.
- G. Ma, T. S. Aarthy, and O. Ozen. On the quinary homogeneous bi-quadratic equation x 4 + y 4 -(x + y)w 3 = 14 z 2 t 2 . Journal of Fundamental and Applied Sciences, 12(2):516-524, 2020.
- G. Ma, T. S. Aarthy, and O. Ozen. On the system of double equations with three unknowns d + ay + bx + cx 2 = z 2 , y + z = x 2 . International Journal of Nonlinear Analysis and Applications, 12(1):575-581, 2021.
- G. Ma, V. Sa, and O. Ozen. A Collection of Pellian Equation (Solutions and Properties).
- J. Neukirch. Algebraic Number Theory. Springer Science & Business Media, Mar. 2013.
- O. Ozen and G. Ma. On the homogeneous cone z 2 + (k + 1) y 2 = (k + 1) (k + 3) x 2 . Pioneer Journal of Mathematics and Mathematical Sciences, 25(1):9-18, 2019.
- V. Sa, G. Ma, T. S. Aarthy, and O. Ozen. On ternary biquadratic diophantine equation 11(x 2 -y 2 ) + 3(xy) = z 4 . Notes on Number Theory and Discrete Mathematics, 25(3):65-71, 2019.
- V. Sa, G. Ma, and O. Ozen. On non-homogeneous cubic equation with four unknowns xy + 2z 2 = 2w 3 . Purakala: UGC Care Approved Journal, 31(2):927-933, 2022.
- B. Salim, A. M. Ahmed, and O. Ozen. Representation of integers by k-generalized fibonacci sequences and applications in cryptography. Asian-European Journal of Mathematics, 14(9):21501571-215015711, 2021.
- J.-P. Serre. A Course in Arithmetic. Springer, 1973.
- N. J. Wildberger. Math foundations. YouTube playlist on Insights Into Mathematics channel, 2009. URL: https://youtu.be/HsUxn2l1Wzk?list=PLIljB45xT85DGxj1x_dyaSggbauAgrB6R.
- N. J. Wildberger. Data structures in mathematics (math foundations 151).
- YouTube video on Insights Into Mathematics channel, 2015. URL: https://youtu.be/q2beQrKjtzs.
- N. J. Wildberger. Wild egg maths. YouTube playlist on WildEggMathematicsCourses, 2017. URL: https://www.youtube.com/@WildEggMathematicsCourses.
- N. J. Wildberger. Box arithmetic. YouTube video on Insights Into Mathematics channel, 2021. URL: https://youtu.be/4xoF2SRp194?list=PLIljB45xT85B0aMG-G9oqj-NPIuBMnq8z.
- N. J. Wildberger. Solving polynomial equations. YouTube video on Wild Egg Maths channel, 2021. URL: https://youtu.be/XHC1YLh67Z0?list=PLzdiPTrEWyz7PpsRFHuGb3EhwZtEOdRjV.
- N. J. Wildberger. Algebraic calculus two. YouTube playlist on Wild Egg Maths channel, 2022. URL: https://youtu.be/HXdUfOTwDlc?list=PLzdiPTrEWyz7cyg5JdKBpzB4fTQT7f-Xl.
- N. J. Wildberger and D. Rubine. A hyper-catalan series solution to polynomial equations, and the geode. The American Mathematical Monthly, 132(5):383-402, May 2025.