Academia.eduAcademia.edu

Outline

Modular Resolutions by Polyseries

Abstract

We study the modular resolution method using a new tool called a polyserie, introduced by Prof. Wildberger N.J. \& Rubine D. in their recent article \cite{wildberger2025hyper}. In the present article we try to prove an equivalence theorem of the existence and the uniqueness of the solutions of the modular quadratic equations of the form: \begin{equation*} x^{2}+a.x+u\equiv 0\text{ }\left( \mathrm{mod}\text{ }u^{n}\right) , \end{equation*}% by using the same recurrence formula introduced in \cite{wildberger2025hyper} between the Catalan sequence terms: \begin{equation*} C_{n+1}=\sum_{k=0}^{n}C_{k}.C_{n-k,} \end{equation*}% and by introducing the following notions: Wildberger's polynumber sequences (polynomials), binomial Chu-Vandermonde identity, truncated polyseries and finally modular resolution as application.

References (21)

  1. H. Cohen. A Course in Computational Algebraic Number Theory. Springer, 1993.
  2. F. Q. Gouvea. p-adic Numbers: An Introduction. Springer, 1997.
  3. G. H. Hardy and E. M. Wright. An Introduction to the Theory of Numbers. Oxford University Press, 1979.
  4. R. Lidl and H. Niederreiter. Finite Fields. Cambridge University Press, 1997.
  5. G. Ma, T. S. Aarthy, and O. Ozen. On the quinary homogeneous bi-quadratic equation x 4 + y 4 -(x + y)w 3 = 14 z 2 t 2 . Journal of Fundamental and Applied Sciences, 12(2):516-524, 2020.
  6. G. Ma, T. S. Aarthy, and O. Ozen. On the system of double equations with three unknowns d + ay + bx + cx 2 = z 2 , y + z = x 2 . International Journal of Nonlinear Analysis and Applications, 12(1):575-581, 2021.
  7. G. Ma, V. Sa, and O. Ozen. A Collection of Pellian Equation (Solutions and Properties).
  8. J. Neukirch. Algebraic Number Theory. Springer Science & Business Media, Mar. 2013.
  9. O. Ozen and G. Ma. On the homogeneous cone z 2 + (k + 1) y 2 = (k + 1) (k + 3) x 2 . Pioneer Journal of Mathematics and Mathematical Sciences, 25(1):9-18, 2019.
  10. V. Sa, G. Ma, T. S. Aarthy, and O. Ozen. On ternary biquadratic diophantine equation 11(x 2 -y 2 ) + 3(xy) = z 4 . Notes on Number Theory and Discrete Mathematics, 25(3):65-71, 2019.
  11. V. Sa, G. Ma, and O. Ozen. On non-homogeneous cubic equation with four unknowns xy + 2z 2 = 2w 3 . Purakala: UGC Care Approved Journal, 31(2):927-933, 2022.
  12. B. Salim, A. M. Ahmed, and O. Ozen. Representation of integers by k-generalized fibonacci sequences and applications in cryptography. Asian-European Journal of Mathematics, 14(9):21501571-215015711, 2021.
  13. J.-P. Serre. A Course in Arithmetic. Springer, 1973.
  14. N. J. Wildberger. Math foundations. YouTube playlist on Insights Into Mathematics channel, 2009. URL: https://youtu.be/HsUxn2l1Wzk?list=PLIljB45xT85DGxj1x_dyaSggbauAgrB6R.
  15. N. J. Wildberger. Data structures in mathematics (math foundations 151).
  16. YouTube video on Insights Into Mathematics channel, 2015. URL: https://youtu.be/q2beQrKjtzs.
  17. N. J. Wildberger. Wild egg maths. YouTube playlist on WildEggMathematicsCourses, 2017. URL: https://www.youtube.com/@WildEggMathematicsCourses.
  18. N. J. Wildberger. Box arithmetic. YouTube video on Insights Into Mathematics channel, 2021. URL: https://youtu.be/4xoF2SRp194?list=PLIljB45xT85B0aMG-G9oqj-NPIuBMnq8z.
  19. N. J. Wildberger. Solving polynomial equations. YouTube video on Wild Egg Maths channel, 2021. URL: https://youtu.be/XHC1YLh67Z0?list=PLzdiPTrEWyz7PpsRFHuGb3EhwZtEOdRjV.
  20. N. J. Wildberger. Algebraic calculus two. YouTube playlist on Wild Egg Maths channel, 2022. URL: https://youtu.be/HXdUfOTwDlc?list=PLzdiPTrEWyz7cyg5JdKBpzB4fTQT7f-Xl.
  21. N. J. Wildberger and D. Rubine. A hyper-catalan series solution to polynomial equations, and the geode. The American Mathematical Monthly, 132(5):383-402, May 2025.