Academia.eduAcademia.edu

Outline

Quench dynamics of many-body systems

2010

References (159)

  1. B.6 Discrepancies δn x (π) (upper panels) and δn z (π) (lower pan- els) for a quench to J z,f = 0.5 for different values of the dis- order amplitude in the three cases. Data for L = 12, average on 200 disorder instances. . . . . . . . . . . . . . . . . . . . . 87
  2. B.7 Discrepancies δn x (π) (black circles) and δn z (π) (red squares) for a quench from J z,i = 20 to J z,f = 0.5. Data for L = 12, average on 200 disorder instances. . . . . . . . . . . . . . . . 88
  3. E. Altman and A. Auerbach. Oscillating superfluidity of bosons in optical lattices. Phys. Rev. Lett., 89(25):250404, 2002.
  4. B. L. Altshuler, Y. Gefen, A. Kamenev, and L. S. Levitov. Quasipar- ticle lifetime in a finite system: A nonperturbative approach. Phys. Rev. Lett., 78(14):2803-2806, 1997.
  5. Y. Avishai, J. Richert, and R. Berkovits. Level statistics in a heisen- berg chain with random magnetic field. Phys. Rev. B, 66(5):052416, 2002.
  6. R. Barankov and A. Polkovnikov. Optimal nonlinear passage through a quantum critical point. Phys. Rev. Lett., 101:076801, 2008.
  7. T. Barthel and U. Schollwöck. Dephasing and the steady state in quantum many-particle systems. Phys. Rev. Lett., 100(10):100601, 2008.
  8. D. Basko, I. Aleiner, and B. Altshuler. Metal-insulator transition in a weakly interacting many-electron system with localized single-particle states. Annals of Physics, 321(5):1126 -1205, 2006.
  9. G. P. Berman, F. Borgonovi, F. M. Izrailev, and V. I. Tsifrinovich. Delocalization border and onset of chaos in a model of quantum com- putation. Phys. Rev. E, 64(5):056226, 2001.
  10. G. Biroli, L. F. Cugliandolo, and A. Sicilia. Kibble-zurek mechanism and infinitely slow annealing through critical points. Phys. Rev. E, 81(5):050101, 2010.
  11. G. Biroli, C. Kollath, and M. A. Laeuchli. Does thermalization occur in an isolated system after a global quantum quench? arXiv:0907.3731, 2009.
  12. I. Bloch, J. Dalibard, and W. Zwerger. Many-body physics with ul- tracold gases. Rev. Mod. Phys., 80(3):885-964, 2008.
  13. C. D. E. Boschi, E. Ercolessi, F. Ortolani, and M. Roncaglia. On c = 1 critical phases in anisotropic spin-1 chains. Eur. Phys. J. B, 35(4):465-473, 2003.
  14. C. D. E. Boschi and F. Ortolani. Investigation of quantum phase tran- sitions using multi-target dmrg methods. Eur. Phys. J. B, 41(4):14, 2004.
  15. W. G. Brown, L. F. Santos, D. J. Starling, and L. Viola. Quantum chaos, delocalization, and entanglement in disordered heisenberg mod- els. Phys. Rev. E, 77(2):021106, 2008.
  16. P. Calabrese and J. Cardy. Entanglement entropy and quantum field theory. JSTAT, 2004(06):P06002, 2004.
  17. P. Calabrese and J. Cardy. Evolution of entanglement entropy in one- dimensional systems. JSTAT, 2005(04):P04010, 2005.
  18. P. Calabrese and J. Cardy. Time dependence of correlation functions following a quantum quench. Phys. Rev. Lett., 96(13):136801, 2006.
  19. P. Calabrese and J. Cardy. Entanglement and correlation functions following a local quench: a conformal field theory approach. JSTAT, 2007(10):P10004, 2007.
  20. P. Calabrese and J. Cardy. Quantum quenches in extended systems. JSTAT, 2007(06):P06008, 2007.
  21. P. Calabrese and J. Cardy. Entanglement entropy and conformal field theory. J.of Phys. A, 42(50):504005, 2009.
  22. T. Caneva. Adiabatic dynamics of many-body systems close to a quan- tum critical point. PhD thesis, SISSA, 2009.
  23. T. Caneva, E. Canovi, D. Rossini, G. E. Santoro, and A. Silva. Quan- tum quenches in a random ising chain. In preparation, 2010.
  24. T. Caneva, R. Fazio, and G. E. Santoro. Adiabatic quantum dynamics of a random ising chain across its quantum critical point. Phys. Rev. B, 76:144427, 2007.
  25. T. Caneva, R. Fazio, and G. E. Santoro. Adiabatic quantum dynamics of the lipkin-meshkov-glick model. Phys. Rev. B, 78:104426, 2008.
  26. T. Caneva, M. Murphy, T. Calarco, R. Fazio, S. Montangero, V. Gio- vannetti, and G. E. Santoro. Optimal control at the quantum speed limit. Phys. Rev. Lett., 103(24):240501, 2009.
  27. E. Canovi, D. Rossini, R. Fazio, and G. E. Santoro. Adiabatic dynam- ics of a spin-1 chain across the berezinskii-kosterlitz-thouless quantum phase transition. J. Stat. Mech., page P03038, 2009.
  28. E. Canovi, D. Rossini, R. Fazio, G. E. Santoro, and A. Silva. Quantum quenches, thermalization and many-body localization. arXiv:1006.1634, 2010.
  29. M. A. Cazalilla. Effect of suddenly turning on interactions in the luttinger model. Phys. Rev. Lett., 97(15):156403, 2006.
  30. M. Chaikin and T. Lubensky. Principles of condensed matter physics. Cambridge University Press, 1995.
  31. W. Chen, K. Hida, and B. C. Sanctuary. Ground-state phase diagram of s = 1 xxz chains with uniaxial single-ion-type anisotropy. Phys. Rev. B, 67(10):104401, 2003.
  32. R. W. Cherng and L. S. Levitov. Entropy and correlation functions of a driven quantum spin chain. Phys. Rev. A, 73(4):043614, 2006.
  33. G. D. Chiara, S. Montangero, P. Calabrese, and R. Fazio. En- tanglement entropy dynamics of heisenberg chains. JSTAT, 2006(03):P03001, 2006.
  34. D. Chowdhury, U. Divakaran, and A. Dutta. Adiabatic dynamics in passage across quantum critical lines and gapless phases. Phys. Rev. E, 81(1):012101, 2010.
  35. L. Cincio, J. Dziarmaga, M. M. Rams, and W. H. Zurek. Entropy of entanglement and correlations induced by a quench: Dynamics of a quantum phase transition in the quantum ising model. Phys. Rev. A, 75:052321, 2007.
  36. S. R. Clark and D. Jaksch. Dynamics of the superfluid to mott- insulator transition in one dimension. Phys. Rev. A, 70(4):043612, 2004.
  37. M. Cramer, C. M. Dawson, J. Eisert, and T. J. Osborne. Exact re- laxation in a class of nonequilibrium quantum lattice systems. Phys. Rev. Lett., 100(3):030602, 2008.
  38. F. M. Cucchietti, B. Damski, J. Dziarmaga, and W. H. Zurek. Dy- namics of the bose-hubbard model: Transition from a mott insulator to a superfluid. Phys. Rev. A, 75(2):023603, 2007.
  39. B. Damski. The simplest quantum model supporting the kibble-zurek mechanism of topological defect production: Landau-zener transitions from a new perspective. Phys. Rev. Lett., 95:035701, 2005.
  40. G. De Chiara, M. Rizzi, D. Rossini, and S. Montangero. Density Ma- trix Renormalization Group for Dummies. Journal of Computational and Theoretical Nanoscience, 5(7):1277-1288, 2008.
  41. C. De Grandi, R. A. Barankov, and A. Polkovnikov. Adiabatic nonlinear probes of one-dimensional bose gases. Phys. Rev. Lett., 101(23):230402, 2008.
  42. C. De Grandi, V. Gritsev, and A. Polkovnikov. Quench dynamics near a quantum critical point: Application to the sine-gordon model. Phys. Rev. B, 81(22):224301, 2010.
  43. C. De Grandi, V. Gritsev, and A. Polkovnikov. Quench dynamics near a quantum critical point: Application to the sine-gordon model. Phys. Rev. B, 81(22):224301, 2010.
  44. C. De Grandi and A. Polkovnikov. Quantum Quenching, Anneal- ing and Computation, chapter Adiabatic perturbation theory: from Landau-Zener problem to quenching through a quantum critical point. Lecture Notes in Physics. Springer, Heidelberg, 2010.
  45. A. del Campo, G. D. Chiara, G. Morigi, M. B. Plenio, and A. Retzker. Structural defects in ion crystals by quenching the external potential: the inhomogeneous kibble-zurek mechanism. arXiv:1002.2524, 2010.
  46. M. den Nijs and K. Rommelse. Preroughening transitions in crystal surfaces and valence-bond phases in quantum spin chains. Phys. Rev. B, 40(7):4709-4734, 1989.
  47. S. Deng, G. Ortiz, and L. Viola. Dynamical non-ergodic scaling in continuous finite-order quantum phase transitions. Europhys. Lett., 84:67008, 2008.
  48. S. Deng, G. Ortiz, and L. Viola. Anomalous nonergodic scaling in adi- abatic multicritical quantum quenches. Phys. Rev. B, 80(24):241109, 2009.
  49. J. M. Deutsch. Quantum statistical mechanics in a closed system. Phys. Rev. A, 43(4):2046-2049, 1991.
  50. M. Di Stasio and X. Zotos. Connection between low energy effective hamiltonians and energy level statistics. Phys. Rev. Lett., 74(11):2050- 2053, 1995.
  51. U. Divakaran, A. Dutta, and D. Sen. Quenching along a gapless line: A different exponent for defect density. Phys. Rev. B, 78(14):144301, 2008.
  52. U. Divakaran, V. Mukherjee, A. Dutta, and D. Sen. Defect production due to quenching through a multicritical point. J. Stat. Mech., page P02007, 2009.
  53. B. Dóra, E. V. Castro, and R. Moessner. Quantum quench dynamics and population inversion in bilayer graphene. arXiv:1004.3757, 2010.
  54. B. Dóra and R. Moessner. Nonlinear electric transport in graphene: Quantum quench dynamics and the schwinger mechanism. Phys. Rev. B, 81(16):165431, 2010.
  55. U. Dorner, P. Fedichev, D. Jaksch, M. Lewenstein, and P. Zoller. En- tangling strings of neutral atoms in 1d atomic pipeline structures. Phys. Rev. Lett., 91:073601, 2003.
  56. C. A. Doty and D. S. Fisher. Effects of quenched disorder on spin-1/2 quantum xxz chains. Phys. Rev. B, 45(5):2167-2179, 1992.
  57. F. Dukesz, M. Zilbergerts, and L. F. Santos. Interplay between inter- action and (un)correlated disorder in one-dimensional many-particle systems: delocalization and global entanglement. New J. of Phys., 11, 2009.
  58. J. Dziarmaga. Dynamics of a quantum phase transition: Exact so- lution of the quantum ising model. Phys. Rev. Lett., 95(24):245701, 2005.
  59. J. Dziarmaga. Dynamics of a quantum phase transition in the random ising model: Logarithmic dependence of the defect density on the transition rate. Phys. Rev. B, 74:064416, 2006.
  60. J. Dziarmaga. Dynamics of a quantum phase transition and relaxation to a steady state. arXiv:0912.4034, 2009.
  61. J. Dziarmaga, J. Meisner, and W. H. Zurek. Winding up of the wave- function phase by an insulator-to-superfluid transition in a ring of coupled bose-einstein condensates. Phys. Rev. Lett., 101:115701, 2008.
  62. J. Dziarmaga and M. M. Rams. Dynamics of an inhomogeneous quan- tum phase transition. arXiv:0904.0115, 2009.
  63. M. Eckstein and M. Kollar. Nonthermal steady states after an in- teraction quench in the falicov-kimball model. Phys. Rev. Lett., 100(12):120404, 2008.
  64. M. Eckstein, M. Kollar, and P. Werner. Thermalization after an inter- action quench in the hubbard model. Phys. Rev. Lett., 103(5):056403, 2009.
  65. M. Fagotti and P. Calabrese. Evolution of entanglement entropy fol- lowing a quantum quench: Analytic results for the xy chain in a trans- verse magnetic field. Phys. Rev. A, 78(1):010306, 2008.
  66. M. Fagotti and P. Calabrese. Entanglement entropy of two disjoint blocks in xy chains. JSTAT, 2010(04):P04016, 2010.
  67. E. Farhi, J. Goldstone, S. Gutmann, J. Lapan, A. Lundgren, and D. Preda. A quantum adiabatic evolution algorithm applied to random instances of an NP-Complete problem. Science, 292:472, 2001.
  68. A. Faribault, P. Calabrese, and J.-S. Caux. Bethe ansatz approach to quench dynamics in the richardson model. J.of Math. Phys., 50(9):095212, 2009.
  69. A. Faribault, P. Calabrese, and J.-S. Caux. Quantum quenches from integrability: the fermionic pairing model. JSTAT, 2009(03):P03018, 2009.
  70. E. Fermi, J. Pasta, and S. Ulam. Studies of nonlinear problems. Doc- ument LA-1940, 1955.
  71. A. Fetter and J. Walecka. Quantum Theory of Many-particle Systems. McGraw-Hill, New York, New York.
  72. D. Fioretto and G. Mussardo. Quantum quenches in integrable field theories. New Journal of Physics, 12(5):055015, 2010.
  73. D. S. Fisher. Random transverse field ising spin chains. Phys. Rev. Lett., 69(3):534-537, 1992.
  74. D. S. Fisher. Critical behavior of random transverse-field ising spin chains. Phys. Rev. B, 51:6411, 1995.
  75. M. P. A. Fisher, P. B. Weichman, G. Grinstein, and D. S. Fisher. Boson localization and the superfluid-insulator transition. Phys. Rev. B, 40(1):546-570, 1989.
  76. G. Gallavotti. Statistical Mechanics: A Short Treatise. Springer, Berlin, 1999.
  77. D. M. Gangardt and M. Pustilnik. Correlations in an expanding gas of hard-core bosons. Phys. Rev. A, 77(4):041604, 2008.
  78. S. Goldstein, J. L. Lebowitz, R. Tumulka, and N. Zanghi. Long-time behavior of macroscopic quantum systems: Commentary accompany- ing the english translation of john von neumann's 1929 article on the quantum ergodic theorem. ariXiv:1003.2129, 2010.
  79. I. V. Gornyi, A. D. Mirlin, and D. G. Polyakov. Interacting electrons in disordered wires: Anderson localization and low-t transport. Phys. Rev. Lett., 95(20):206603, 2005.
  80. M. Greiner, O. Mandel, T. Esslinger, T. Hansch, and I. Bloch. Quan- tum phase transition from a superfluid to a mott insulator in a gas of ultracold atoms. Nature, 415(6867):39-44, 2002.
  81. V. Gritsev and A. Polkovnikov. Understanding Quantum Phase Tran- sitions, chapter Universal Dynamics Near Quantum Critical Points. Taylor & Francis, Boca Raton, 2010.
  82. T. Guhr, A. Muller-Groeling, and H. Weidenmuller. Random-matrix theories in quantum physics: Common concepts. Phys. Rep., 299(4- 6):190-425, 1998.
  83. F. Haake. Quantum Signatures of Chaos. Springer-Verlag, Berlin, 1991.
  84. F. D. M. Haldane. Effective harmonic-fluid approach to low-energy properties of one-dimensional quantum fluids. Phys. Rev. Lett., 47(25):1840-1843, 1981.
  85. S. D. Huber, E. Altman, H. P. Büchler, and G. Blatter. Dynamical properties of ultracold bosons in an optical lattice. Phys. Rev. B, 75(8):085106, 2007.
  86. M. Žnidaric, T. c. v. Prosen, and P. Prelovšek. Many-body localiza- tion in the heisenberg xxz magnet in a random field. Phys. Rev. B, 77(6):064426, 2008.
  87. F. Iglói and H. Rieger. Random transverse ising spin chain and random walks. Phys. Rev. B., 57:11404, 1998.
  88. F. Izrailev. Simple-models of quantum chaos -spectrum and eigen- functions. Phys. Rep., 196(5-6):299-392, 1990.
  89. P. Jacquod and D. L. Shepelyansky. Emergence of quantum chaos in finite interacting fermi systems. Phys. Rev. Lett., 79(10):1837-1840, 1997.
  90. D. Jaksch, C. Bruder, J. I. Cirac, C. W. Gardiner, and P. Zoller. Cold bosonic atoms in optical lattices. Phys. Rev. Lett., 81(15):3108-3111, 1998.
  91. T. Kinoshita, T. Wenger, and D. Weiss. A quantum newton's cradle. Nature;, 440(7086):900-903, 2006.
  92. M. Kollar and M. Eckstein. Relaxation of a one-dimensional mott insulator after an interaction quench. Phys. Rev. A, 78(1):013626, 2008.
  93. C. Kollath, A. M. Läuchli, and E. Altman. Quench dynamics and nonequilibrium phase diagram of the bose-hubbard model. Phys. Rev. Lett., 98(18):180601, 2007.
  94. K. Kudo and T. Deguchi. Level statistics of xxz spin chains with a random magnetic field. Phys. Rev. B, 69(13):132404, 2004.
  95. A. Lamacraft. Quantum quenches in a spinor condensate. Phys. Rev. Lett., 98(16):160404, 2007.
  96. L. D. Landau and E. M. Lifshits. Quantum mechanics -non-relativistic theory, volume 3 of Course of theoretical physics. Pergamon Press, third edition, 1977.
  97. E. Lieb, T. Schultz, and D. Mattis. Two soluble models of an antifer- romagnetic chain. Ann. Phys. (N.Y.), 16:407, 1961.
  98. S. R. Manmana, S. Wessel, R. M. Noack, and A. Muramatsu. Strongly correlated fermions after a quantum quench. Phys. Rev. Lett., 98(21):210405, 2007.
  99. P. Mazur. Non-ergodicity of phase functions in certain systems. Phys- ica, 43(4):533 -545, 1969.
  100. B. McCoy and T. Wu. The Two Dimensional Ising Model. Harvard University Press, Cambridge, Massachussets, 1973.
  101. A. Messiah. Quantum mechanics, volume 2. North-Holland, Amster- dam, 1962.
  102. M. Moeckel and S. Kehrein. Interaction quench in the hubbard model. Phys. Rev. Lett., 100(17):175702, 2008.
  103. M. Moeckel and S. Kehrein. Crossover from adiabatic to sudden in- teraction quenches in the hubbard model: prethermalization and non- equilibrium dynamics. New J. of Phys., 12(5):055016, 2010.
  104. S. Mondal, K. Sengupta, and D. Sen. Theory of defect production in nonlinear quench across a quantum critical point. Phys. Rev. B, 79(4):045128, 2009.
  105. C. Monthus and T. Garel. Many-body localization transition in a lat- tice model of interacting fermions: Statistics of renormalized hoppings in configuration space. Phys. Rev. B, 81(13):134202, 2010.
  106. V. Mukherjee, U. Divakaran, A. Dutta, and D. Sen. Quenching dy- namics if a quantum xy spin-1/2 chain in presence of a transverse field. Phys. Rev. B, 76:174303, 2007.
  107. V. Mukherjee, A. Dutta, and D. Sen. Defect generation in a spin-12 transverse xy chain under repeated quenching of the transverse field. Phys. Rev. B, 77(21):214427, 2008.
  108. G. Mussardo. Statistical field theory. An Introduction to Exactly Solved Models in Stastical Physics. Oxford. Oxford University Press, 2009.
  109. N. Nagaosa. Quantum Field Theory in Strongly Correlated Electronic Systems. Springer-Verlag, Berlin, 1999.
  110. V. Oganesyan and D. A. Huse. Localization of interacting fermions at high temperature. Phys. Rev. B, 75(15):155111, 2007.
  111. A. Pal and D. A. Huse. The many-body localization transition. arXiv:1003.2613, 2010.
  112. F. Pellegrini, S. Montangero, G. E. Santoro, and R. Fazio. Adiabatic quenches through an extended quantum critical region. Phys. Rev. B, 77(14):140404, 2008.
  113. A. Peres. Ergodicity and mixing in quantum theory. i. Phys. Rev. A, 30(1):504-508, 1984.
  114. P. Pfeuty. The one-dimensional ising model with a transverse field. Ann. Phys. (N.Y.), 57:79, 1970.
  115. A. S. Pires and M. E. Gouvêa. Quantum fluctuations in low- dimensional easy-plane spin models. Eur. Phys. J. B, 44(2):169-174, 2005.
  116. D. Poilblanc, T. Ziman, J. Bellissard, F. Mila, and G. Montambaux. Poisson vs. goe statistics in integrable and non-integrable quantum hamiltonians. Euophys. Lett., 22(7):537, 1993.
  117. A. Polkovnikov. Universal adiabatic dynamics in the vicinity of a quantum critical point. Phys. Rev. B, 72:161201(R), 2005.
  118. A. Polkovnikov. Microscopic diagonal entropy and its connection to basic thermodynamic relations. arXiv:0806.2862, 2008.
  119. A. Polkovnikov and V. Gritsev. Breakdown of the adiabatic limit in low-dimensional gapless systems. Nature Physics, 4:477, 2008.
  120. A. Polkovnikov, K. Sengupta, A. Silva, and M. Vengalattore. Nonequilibrium dynamics of closed interacting quantum systems. arXiv:1007.5331, 2010.
  121. D. A. Rabson, B. N. Narozhny, and A. J. Millis. Crossover from poisson to wigner-dyson level statistics in spin chains with integrability breaking. Phys. Rev. B, 69(5):054403, 2004.
  122. G. Refael and J. Moore. Entanglement entropy of random quantum critical points in one dimension. Phys. Rev. Lett., 93:260602, 2004.
  123. C. Regal and D. S. Jin. Experimental realization of bcs-bec crossover physics with a fermi gas of atoms. arXiv:cond-mat/0601054v1.
  124. H. Rieger and F. Iglói. Quantum critical dynamics of the random transverse-field ising spin chain. Europhys. Lett., 39(2):135, 1997.
  125. M. Rigol. Breakdown of thermalization in finite one-dimensional sys- tems. Phys. Rev. Lett., 103(10):100403, 2009.
  126. M. Rigol, V. Dunjko, and M. Olshanii. Thermalization and its mech- anism for generic isolated quantum systems. Nature, 452(7189):854- 858, 2008.
  127. M. Rigol, V. Dunjko, V. Yurovsky, and M. Olshanii. Relaxation in a completely integrable many-body quantum system: An ab initio study of the dynamics of the highly excited states of 1d lattice hard-core bosons. Phys. Rev. Lett., 98(5):050405, 2007.
  128. M. Rigol and L. F. Santos. Quantum chaos and thermalization in gapped systems after a quench. arXiv:1003.1403, 2010.
  129. G. Rigolin and G. Ortiz. Adiabatic perturbation theory and geometric phases for degenerate systems. Phys. Rev. Lett., 104(17):170406, 2010.
  130. G. Rigolin, G. Ortiz, and V. H. Ponce. Beyond the quantum adia- batic approximation: Adiabatic perturbation theory. Phys. Rev. A, 78(5):052508, 2008.
  131. D. Rossini, A. Silva, G. Mussardo, and G. E. Santoro. Effective ther- mal dynamics following a quantum quench in a spin chain. Phys. Rev. Lett., 102(12):127204, 2009.
  132. D. Rossini, A. Silva, G. Mussardo, and G. E. Santoro. Long time dynamics following a quench in an integrable quantum spin chain: local versus non-local operators and effective thermal behavior. arXiv:1002.2842, 2010.
  133. S. Sachdev. Quantum Phase Transition. Cambridge University Press, 1999.
  134. S. Sachdev and A. P. Young. Low temperature relaxational dynamics of the ising chain in a transverse field. Phys. Rev. Lett, 78(11):2220, 1997.
  135. L. E. Sadler, J. M. Higbie, S. R. Leslie, M. Vengalattore, and D. M. Stamper-Kurn. Spontaneous symmetry breaking in a quenched ferro- magnetic spinor bose-einstein condensate. Nature, 443:312, 2006.
  136. G. E. Santoro, R. Martoňák, E. Tosatti, and R. Car. Theory of quan- tum annealing of an Ising spin glass. Science, 295:2427, 2002.
  137. G. E. Santoro and E. Tosatti. Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. J. Phys. A: Math. Gen., 39:R393-R431, 2006.
  138. L. F. Santos and M. Rigol. Onset of quantum chaos in one-dimensional bosonic and fermionic systems and its relation to thermalization. Phys. Rev. E, 81(3):036206, 2010.
  139. U. Schollwöck. The density-matrix renormalization group. Rev. Mod. Phys., 77(1):259-315, 2005.
  140. H. J. Schulz. Phase diagrams and correlation exponents for quan- tum spin chains of arbitrary spin quantum number. Phys. Rev. B, 34(9):6372-6385, 1986.
  141. R. Schützhold, M. Uhlmann, Y. Xu, and U. R. Fischer. Sweeping from the superfluid to the mott phase in the bose-hubbard model. Phys. Rev. Lett., 97(20):200601, 2006.
  142. D. Sen, K. Sengupta, and S. Mondal. Defect production in nonlinear quench across a quantum critical point. Phys. Rev. Lett., 101:016806, 2008.
  143. K. Sengupta, D. Sen, and S. Mondal. Exact results for quench dy- namics and defect production in a two-dimensional model. Phys. Rev. Lett., 100(7):077204, 2008.
  144. R. Shankar and G. Murthy. Nearest-neighbor frustrated random-bond model in d=2: Some exact results. Phys. Rev. B, 36(1):536-545, 1987.
  145. S. Sotiriadis, P. Calabrese, and J. Cardy. Quantum quench from a thermal initial state. Europhys. Lett., 87(2):20002, 2009.
  146. M. Srednicki. Chaos and quantum thermalization. Phys. Rev. E, 50(2):888-901, 1994.
  147. B. Sutherland. Beautiful Models. World Scientific, 2004.
  148. A. K. Tuchman, C. Orzel, A. Polkovnikov, and M. A. Kasevich. Nonequilibrium coherence dynamics of a soft boson lattice. Phys. Rev. A, 74(5):051601, 2006.
  149. L. C. Venuti, C. D. E. Boschi, E. Ercolessi, G. Morandi, F. Ortolani, S. Pasini, and M. Roncaglia. Stable particles in anisotropic spin-1 chains. Eur. Phys. J. B, 53(1):11-18, 2006.
  150. G. Vidal, J. I. Latorre, E. Rico, and A. Kitaev. Entanglement in quantum critical phenomena. Phys. Rev. Lett., 90(22):227902, 2003.
  151. N. V. Vitanov. Transition time in the landau-zener model. Phys. Rev. A, 59:988, 1999.
  152. N. V. Vitanov and B. M. Garraway. Landau-zener model: Effects of finite coupling duration. Phys. Rev. A, 53:4288, 1996.
  153. J. von Neumann. Beweis des ergodensatzes und des h-theorems in der neuen mechanik. Z. f. Physik, 57:30-70, 1929.
  154. A. Young. Finite-temperature and dynamical properties of the random transverse-field ising spin chain. Phys. Rev. B, 56:11691, 1997.
  155. A. P. Young and H. Rieger. Numerical study of the random transverse- field ising spin chain. Phys. Rev. B, 53:8486, 1996.
  156. V. Zelevinsky, B. Brown, N. Frazier, and M. Horoi. The nuclear shell model as a testing ground for many-body quantum chaos. Phys. Rep., 276:85-176, 1996.
  157. C. Zener. Non-adiabatic crossing of energy levels. Proc. Royal Soc. A, 137:696, 1932.
  158. W. H. Zurek. Cosmological experiments in superfluid-helium. Nature, 317:505, 1985.
  159. W. H. Zurek, U. Dorner, and P. Zoller. Dynamics of a quantum phase transition. Phys. Rev. Lett., 95:105701, 2005.