Quench dynamics of many-body systems
2010
References (159)
- B.6 Discrepancies δn x (π) (upper panels) and δn z (π) (lower pan- els) for a quench to J z,f = 0.5 for different values of the dis- order amplitude in the three cases. Data for L = 12, average on 200 disorder instances. . . . . . . . . . . . . . . . . . . . . 87
- B.7 Discrepancies δn x (π) (black circles) and δn z (π) (red squares) for a quench from J z,i = 20 to J z,f = 0.5. Data for L = 12, average on 200 disorder instances. . . . . . . . . . . . . . . . 88
- E. Altman and A. Auerbach. Oscillating superfluidity of bosons in optical lattices. Phys. Rev. Lett., 89(25):250404, 2002.
- B. L. Altshuler, Y. Gefen, A. Kamenev, and L. S. Levitov. Quasipar- ticle lifetime in a finite system: A nonperturbative approach. Phys. Rev. Lett., 78(14):2803-2806, 1997.
- Y. Avishai, J. Richert, and R. Berkovits. Level statistics in a heisen- berg chain with random magnetic field. Phys. Rev. B, 66(5):052416, 2002.
- R. Barankov and A. Polkovnikov. Optimal nonlinear passage through a quantum critical point. Phys. Rev. Lett., 101:076801, 2008.
- T. Barthel and U. Schollwöck. Dephasing and the steady state in quantum many-particle systems. Phys. Rev. Lett., 100(10):100601, 2008.
- D. Basko, I. Aleiner, and B. Altshuler. Metal-insulator transition in a weakly interacting many-electron system with localized single-particle states. Annals of Physics, 321(5):1126 -1205, 2006.
- G. P. Berman, F. Borgonovi, F. M. Izrailev, and V. I. Tsifrinovich. Delocalization border and onset of chaos in a model of quantum com- putation. Phys. Rev. E, 64(5):056226, 2001.
- G. Biroli, L. F. Cugliandolo, and A. Sicilia. Kibble-zurek mechanism and infinitely slow annealing through critical points. Phys. Rev. E, 81(5):050101, 2010.
- G. Biroli, C. Kollath, and M. A. Laeuchli. Does thermalization occur in an isolated system after a global quantum quench? arXiv:0907.3731, 2009.
- I. Bloch, J. Dalibard, and W. Zwerger. Many-body physics with ul- tracold gases. Rev. Mod. Phys., 80(3):885-964, 2008.
- C. D. E. Boschi, E. Ercolessi, F. Ortolani, and M. Roncaglia. On c = 1 critical phases in anisotropic spin-1 chains. Eur. Phys. J. B, 35(4):465-473, 2003.
- C. D. E. Boschi and F. Ortolani. Investigation of quantum phase tran- sitions using multi-target dmrg methods. Eur. Phys. J. B, 41(4):14, 2004.
- W. G. Brown, L. F. Santos, D. J. Starling, and L. Viola. Quantum chaos, delocalization, and entanglement in disordered heisenberg mod- els. Phys. Rev. E, 77(2):021106, 2008.
- P. Calabrese and J. Cardy. Entanglement entropy and quantum field theory. JSTAT, 2004(06):P06002, 2004.
- P. Calabrese and J. Cardy. Evolution of entanglement entropy in one- dimensional systems. JSTAT, 2005(04):P04010, 2005.
- P. Calabrese and J. Cardy. Time dependence of correlation functions following a quantum quench. Phys. Rev. Lett., 96(13):136801, 2006.
- P. Calabrese and J. Cardy. Entanglement and correlation functions following a local quench: a conformal field theory approach. JSTAT, 2007(10):P10004, 2007.
- P. Calabrese and J. Cardy. Quantum quenches in extended systems. JSTAT, 2007(06):P06008, 2007.
- P. Calabrese and J. Cardy. Entanglement entropy and conformal field theory. J.of Phys. A, 42(50):504005, 2009.
- T. Caneva. Adiabatic dynamics of many-body systems close to a quan- tum critical point. PhD thesis, SISSA, 2009.
- T. Caneva, E. Canovi, D. Rossini, G. E. Santoro, and A. Silva. Quan- tum quenches in a random ising chain. In preparation, 2010.
- T. Caneva, R. Fazio, and G. E. Santoro. Adiabatic quantum dynamics of a random ising chain across its quantum critical point. Phys. Rev. B, 76:144427, 2007.
- T. Caneva, R. Fazio, and G. E. Santoro. Adiabatic quantum dynamics of the lipkin-meshkov-glick model. Phys. Rev. B, 78:104426, 2008.
- T. Caneva, M. Murphy, T. Calarco, R. Fazio, S. Montangero, V. Gio- vannetti, and G. E. Santoro. Optimal control at the quantum speed limit. Phys. Rev. Lett., 103(24):240501, 2009.
- E. Canovi, D. Rossini, R. Fazio, and G. E. Santoro. Adiabatic dynam- ics of a spin-1 chain across the berezinskii-kosterlitz-thouless quantum phase transition. J. Stat. Mech., page P03038, 2009.
- E. Canovi, D. Rossini, R. Fazio, G. E. Santoro, and A. Silva. Quantum quenches, thermalization and many-body localization. arXiv:1006.1634, 2010.
- M. A. Cazalilla. Effect of suddenly turning on interactions in the luttinger model. Phys. Rev. Lett., 97(15):156403, 2006.
- M. Chaikin and T. Lubensky. Principles of condensed matter physics. Cambridge University Press, 1995.
- W. Chen, K. Hida, and B. C. Sanctuary. Ground-state phase diagram of s = 1 xxz chains with uniaxial single-ion-type anisotropy. Phys. Rev. B, 67(10):104401, 2003.
- R. W. Cherng and L. S. Levitov. Entropy and correlation functions of a driven quantum spin chain. Phys. Rev. A, 73(4):043614, 2006.
- G. D. Chiara, S. Montangero, P. Calabrese, and R. Fazio. En- tanglement entropy dynamics of heisenberg chains. JSTAT, 2006(03):P03001, 2006.
- D. Chowdhury, U. Divakaran, and A. Dutta. Adiabatic dynamics in passage across quantum critical lines and gapless phases. Phys. Rev. E, 81(1):012101, 2010.
- L. Cincio, J. Dziarmaga, M. M. Rams, and W. H. Zurek. Entropy of entanglement and correlations induced by a quench: Dynamics of a quantum phase transition in the quantum ising model. Phys. Rev. A, 75:052321, 2007.
- S. R. Clark and D. Jaksch. Dynamics of the superfluid to mott- insulator transition in one dimension. Phys. Rev. A, 70(4):043612, 2004.
- M. Cramer, C. M. Dawson, J. Eisert, and T. J. Osborne. Exact re- laxation in a class of nonequilibrium quantum lattice systems. Phys. Rev. Lett., 100(3):030602, 2008.
- F. M. Cucchietti, B. Damski, J. Dziarmaga, and W. H. Zurek. Dy- namics of the bose-hubbard model: Transition from a mott insulator to a superfluid. Phys. Rev. A, 75(2):023603, 2007.
- B. Damski. The simplest quantum model supporting the kibble-zurek mechanism of topological defect production: Landau-zener transitions from a new perspective. Phys. Rev. Lett., 95:035701, 2005.
- G. De Chiara, M. Rizzi, D. Rossini, and S. Montangero. Density Ma- trix Renormalization Group for Dummies. Journal of Computational and Theoretical Nanoscience, 5(7):1277-1288, 2008.
- C. De Grandi, R. A. Barankov, and A. Polkovnikov. Adiabatic nonlinear probes of one-dimensional bose gases. Phys. Rev. Lett., 101(23):230402, 2008.
- C. De Grandi, V. Gritsev, and A. Polkovnikov. Quench dynamics near a quantum critical point: Application to the sine-gordon model. Phys. Rev. B, 81(22):224301, 2010.
- C. De Grandi, V. Gritsev, and A. Polkovnikov. Quench dynamics near a quantum critical point: Application to the sine-gordon model. Phys. Rev. B, 81(22):224301, 2010.
- C. De Grandi and A. Polkovnikov. Quantum Quenching, Anneal- ing and Computation, chapter Adiabatic perturbation theory: from Landau-Zener problem to quenching through a quantum critical point. Lecture Notes in Physics. Springer, Heidelberg, 2010.
- A. del Campo, G. D. Chiara, G. Morigi, M. B. Plenio, and A. Retzker. Structural defects in ion crystals by quenching the external potential: the inhomogeneous kibble-zurek mechanism. arXiv:1002.2524, 2010.
- M. den Nijs and K. Rommelse. Preroughening transitions in crystal surfaces and valence-bond phases in quantum spin chains. Phys. Rev. B, 40(7):4709-4734, 1989.
- S. Deng, G. Ortiz, and L. Viola. Dynamical non-ergodic scaling in continuous finite-order quantum phase transitions. Europhys. Lett., 84:67008, 2008.
- S. Deng, G. Ortiz, and L. Viola. Anomalous nonergodic scaling in adi- abatic multicritical quantum quenches. Phys. Rev. B, 80(24):241109, 2009.
- J. M. Deutsch. Quantum statistical mechanics in a closed system. Phys. Rev. A, 43(4):2046-2049, 1991.
- M. Di Stasio and X. Zotos. Connection between low energy effective hamiltonians and energy level statistics. Phys. Rev. Lett., 74(11):2050- 2053, 1995.
- U. Divakaran, A. Dutta, and D. Sen. Quenching along a gapless line: A different exponent for defect density. Phys. Rev. B, 78(14):144301, 2008.
- U. Divakaran, V. Mukherjee, A. Dutta, and D. Sen. Defect production due to quenching through a multicritical point. J. Stat. Mech., page P02007, 2009.
- B. Dóra, E. V. Castro, and R. Moessner. Quantum quench dynamics and population inversion in bilayer graphene. arXiv:1004.3757, 2010.
- B. Dóra and R. Moessner. Nonlinear electric transport in graphene: Quantum quench dynamics and the schwinger mechanism. Phys. Rev. B, 81(16):165431, 2010.
- U. Dorner, P. Fedichev, D. Jaksch, M. Lewenstein, and P. Zoller. En- tangling strings of neutral atoms in 1d atomic pipeline structures. Phys. Rev. Lett., 91:073601, 2003.
- C. A. Doty and D. S. Fisher. Effects of quenched disorder on spin-1/2 quantum xxz chains. Phys. Rev. B, 45(5):2167-2179, 1992.
- F. Dukesz, M. Zilbergerts, and L. F. Santos. Interplay between inter- action and (un)correlated disorder in one-dimensional many-particle systems: delocalization and global entanglement. New J. of Phys., 11, 2009.
- J. Dziarmaga. Dynamics of a quantum phase transition: Exact so- lution of the quantum ising model. Phys. Rev. Lett., 95(24):245701, 2005.
- J. Dziarmaga. Dynamics of a quantum phase transition in the random ising model: Logarithmic dependence of the defect density on the transition rate. Phys. Rev. B, 74:064416, 2006.
- J. Dziarmaga. Dynamics of a quantum phase transition and relaxation to a steady state. arXiv:0912.4034, 2009.
- J. Dziarmaga, J. Meisner, and W. H. Zurek. Winding up of the wave- function phase by an insulator-to-superfluid transition in a ring of coupled bose-einstein condensates. Phys. Rev. Lett., 101:115701, 2008.
- J. Dziarmaga and M. M. Rams. Dynamics of an inhomogeneous quan- tum phase transition. arXiv:0904.0115, 2009.
- M. Eckstein and M. Kollar. Nonthermal steady states after an in- teraction quench in the falicov-kimball model. Phys. Rev. Lett., 100(12):120404, 2008.
- M. Eckstein, M. Kollar, and P. Werner. Thermalization after an inter- action quench in the hubbard model. Phys. Rev. Lett., 103(5):056403, 2009.
- M. Fagotti and P. Calabrese. Evolution of entanglement entropy fol- lowing a quantum quench: Analytic results for the xy chain in a trans- verse magnetic field. Phys. Rev. A, 78(1):010306, 2008.
- M. Fagotti and P. Calabrese. Entanglement entropy of two disjoint blocks in xy chains. JSTAT, 2010(04):P04016, 2010.
- E. Farhi, J. Goldstone, S. Gutmann, J. Lapan, A. Lundgren, and D. Preda. A quantum adiabatic evolution algorithm applied to random instances of an NP-Complete problem. Science, 292:472, 2001.
- A. Faribault, P. Calabrese, and J.-S. Caux. Bethe ansatz approach to quench dynamics in the richardson model. J.of Math. Phys., 50(9):095212, 2009.
- A. Faribault, P. Calabrese, and J.-S. Caux. Quantum quenches from integrability: the fermionic pairing model. JSTAT, 2009(03):P03018, 2009.
- E. Fermi, J. Pasta, and S. Ulam. Studies of nonlinear problems. Doc- ument LA-1940, 1955.
- A. Fetter and J. Walecka. Quantum Theory of Many-particle Systems. McGraw-Hill, New York, New York.
- D. Fioretto and G. Mussardo. Quantum quenches in integrable field theories. New Journal of Physics, 12(5):055015, 2010.
- D. S. Fisher. Random transverse field ising spin chains. Phys. Rev. Lett., 69(3):534-537, 1992.
- D. S. Fisher. Critical behavior of random transverse-field ising spin chains. Phys. Rev. B, 51:6411, 1995.
- M. P. A. Fisher, P. B. Weichman, G. Grinstein, and D. S. Fisher. Boson localization and the superfluid-insulator transition. Phys. Rev. B, 40(1):546-570, 1989.
- G. Gallavotti. Statistical Mechanics: A Short Treatise. Springer, Berlin, 1999.
- D. M. Gangardt and M. Pustilnik. Correlations in an expanding gas of hard-core bosons. Phys. Rev. A, 77(4):041604, 2008.
- S. Goldstein, J. L. Lebowitz, R. Tumulka, and N. Zanghi. Long-time behavior of macroscopic quantum systems: Commentary accompany- ing the english translation of john von neumann's 1929 article on the quantum ergodic theorem. ariXiv:1003.2129, 2010.
- I. V. Gornyi, A. D. Mirlin, and D. G. Polyakov. Interacting electrons in disordered wires: Anderson localization and low-t transport. Phys. Rev. Lett., 95(20):206603, 2005.
- M. Greiner, O. Mandel, T. Esslinger, T. Hansch, and I. Bloch. Quan- tum phase transition from a superfluid to a mott insulator in a gas of ultracold atoms. Nature, 415(6867):39-44, 2002.
- V. Gritsev and A. Polkovnikov. Understanding Quantum Phase Tran- sitions, chapter Universal Dynamics Near Quantum Critical Points. Taylor & Francis, Boca Raton, 2010.
- T. Guhr, A. Muller-Groeling, and H. Weidenmuller. Random-matrix theories in quantum physics: Common concepts. Phys. Rep., 299(4- 6):190-425, 1998.
- F. Haake. Quantum Signatures of Chaos. Springer-Verlag, Berlin, 1991.
- F. D. M. Haldane. Effective harmonic-fluid approach to low-energy properties of one-dimensional quantum fluids. Phys. Rev. Lett., 47(25):1840-1843, 1981.
- S. D. Huber, E. Altman, H. P. Büchler, and G. Blatter. Dynamical properties of ultracold bosons in an optical lattice. Phys. Rev. B, 75(8):085106, 2007.
- M. Žnidaric, T. c. v. Prosen, and P. Prelovšek. Many-body localiza- tion in the heisenberg xxz magnet in a random field. Phys. Rev. B, 77(6):064426, 2008.
- F. Iglói and H. Rieger. Random transverse ising spin chain and random walks. Phys. Rev. B., 57:11404, 1998.
- F. Izrailev. Simple-models of quantum chaos -spectrum and eigen- functions. Phys. Rep., 196(5-6):299-392, 1990.
- P. Jacquod and D. L. Shepelyansky. Emergence of quantum chaos in finite interacting fermi systems. Phys. Rev. Lett., 79(10):1837-1840, 1997.
- D. Jaksch, C. Bruder, J. I. Cirac, C. W. Gardiner, and P. Zoller. Cold bosonic atoms in optical lattices. Phys. Rev. Lett., 81(15):3108-3111, 1998.
- T. Kinoshita, T. Wenger, and D. Weiss. A quantum newton's cradle. Nature;, 440(7086):900-903, 2006.
- M. Kollar and M. Eckstein. Relaxation of a one-dimensional mott insulator after an interaction quench. Phys. Rev. A, 78(1):013626, 2008.
- C. Kollath, A. M. Läuchli, and E. Altman. Quench dynamics and nonequilibrium phase diagram of the bose-hubbard model. Phys. Rev. Lett., 98(18):180601, 2007.
- K. Kudo and T. Deguchi. Level statistics of xxz spin chains with a random magnetic field. Phys. Rev. B, 69(13):132404, 2004.
- A. Lamacraft. Quantum quenches in a spinor condensate. Phys. Rev. Lett., 98(16):160404, 2007.
- L. D. Landau and E. M. Lifshits. Quantum mechanics -non-relativistic theory, volume 3 of Course of theoretical physics. Pergamon Press, third edition, 1977.
- E. Lieb, T. Schultz, and D. Mattis. Two soluble models of an antifer- romagnetic chain. Ann. Phys. (N.Y.), 16:407, 1961.
- S. R. Manmana, S. Wessel, R. M. Noack, and A. Muramatsu. Strongly correlated fermions after a quantum quench. Phys. Rev. Lett., 98(21):210405, 2007.
- P. Mazur. Non-ergodicity of phase functions in certain systems. Phys- ica, 43(4):533 -545, 1969.
- B. McCoy and T. Wu. The Two Dimensional Ising Model. Harvard University Press, Cambridge, Massachussets, 1973.
- A. Messiah. Quantum mechanics, volume 2. North-Holland, Amster- dam, 1962.
- M. Moeckel and S. Kehrein. Interaction quench in the hubbard model. Phys. Rev. Lett., 100(17):175702, 2008.
- M. Moeckel and S. Kehrein. Crossover from adiabatic to sudden in- teraction quenches in the hubbard model: prethermalization and non- equilibrium dynamics. New J. of Phys., 12(5):055016, 2010.
- S. Mondal, K. Sengupta, and D. Sen. Theory of defect production in nonlinear quench across a quantum critical point. Phys. Rev. B, 79(4):045128, 2009.
- C. Monthus and T. Garel. Many-body localization transition in a lat- tice model of interacting fermions: Statistics of renormalized hoppings in configuration space. Phys. Rev. B, 81(13):134202, 2010.
- V. Mukherjee, U. Divakaran, A. Dutta, and D. Sen. Quenching dy- namics if a quantum xy spin-1/2 chain in presence of a transverse field. Phys. Rev. B, 76:174303, 2007.
- V. Mukherjee, A. Dutta, and D. Sen. Defect generation in a spin-12 transverse xy chain under repeated quenching of the transverse field. Phys. Rev. B, 77(21):214427, 2008.
- G. Mussardo. Statistical field theory. An Introduction to Exactly Solved Models in Stastical Physics. Oxford. Oxford University Press, 2009.
- N. Nagaosa. Quantum Field Theory in Strongly Correlated Electronic Systems. Springer-Verlag, Berlin, 1999.
- V. Oganesyan and D. A. Huse. Localization of interacting fermions at high temperature. Phys. Rev. B, 75(15):155111, 2007.
- A. Pal and D. A. Huse. The many-body localization transition. arXiv:1003.2613, 2010.
- F. Pellegrini, S. Montangero, G. E. Santoro, and R. Fazio. Adiabatic quenches through an extended quantum critical region. Phys. Rev. B, 77(14):140404, 2008.
- A. Peres. Ergodicity and mixing in quantum theory. i. Phys. Rev. A, 30(1):504-508, 1984.
- P. Pfeuty. The one-dimensional ising model with a transverse field. Ann. Phys. (N.Y.), 57:79, 1970.
- A. S. Pires and M. E. Gouvêa. Quantum fluctuations in low- dimensional easy-plane spin models. Eur. Phys. J. B, 44(2):169-174, 2005.
- D. Poilblanc, T. Ziman, J. Bellissard, F. Mila, and G. Montambaux. Poisson vs. goe statistics in integrable and non-integrable quantum hamiltonians. Euophys. Lett., 22(7):537, 1993.
- A. Polkovnikov. Universal adiabatic dynamics in the vicinity of a quantum critical point. Phys. Rev. B, 72:161201(R), 2005.
- A. Polkovnikov. Microscopic diagonal entropy and its connection to basic thermodynamic relations. arXiv:0806.2862, 2008.
- A. Polkovnikov and V. Gritsev. Breakdown of the adiabatic limit in low-dimensional gapless systems. Nature Physics, 4:477, 2008.
- A. Polkovnikov, K. Sengupta, A. Silva, and M. Vengalattore. Nonequilibrium dynamics of closed interacting quantum systems. arXiv:1007.5331, 2010.
- D. A. Rabson, B. N. Narozhny, and A. J. Millis. Crossover from poisson to wigner-dyson level statistics in spin chains with integrability breaking. Phys. Rev. B, 69(5):054403, 2004.
- G. Refael and J. Moore. Entanglement entropy of random quantum critical points in one dimension. Phys. Rev. Lett., 93:260602, 2004.
- C. Regal and D. S. Jin. Experimental realization of bcs-bec crossover physics with a fermi gas of atoms. arXiv:cond-mat/0601054v1.
- H. Rieger and F. Iglói. Quantum critical dynamics of the random transverse-field ising spin chain. Europhys. Lett., 39(2):135, 1997.
- M. Rigol. Breakdown of thermalization in finite one-dimensional sys- tems. Phys. Rev. Lett., 103(10):100403, 2009.
- M. Rigol, V. Dunjko, and M. Olshanii. Thermalization and its mech- anism for generic isolated quantum systems. Nature, 452(7189):854- 858, 2008.
- M. Rigol, V. Dunjko, V. Yurovsky, and M. Olshanii. Relaxation in a completely integrable many-body quantum system: An ab initio study of the dynamics of the highly excited states of 1d lattice hard-core bosons. Phys. Rev. Lett., 98(5):050405, 2007.
- M. Rigol and L. F. Santos. Quantum chaos and thermalization in gapped systems after a quench. arXiv:1003.1403, 2010.
- G. Rigolin and G. Ortiz. Adiabatic perturbation theory and geometric phases for degenerate systems. Phys. Rev. Lett., 104(17):170406, 2010.
- G. Rigolin, G. Ortiz, and V. H. Ponce. Beyond the quantum adia- batic approximation: Adiabatic perturbation theory. Phys. Rev. A, 78(5):052508, 2008.
- D. Rossini, A. Silva, G. Mussardo, and G. E. Santoro. Effective ther- mal dynamics following a quantum quench in a spin chain. Phys. Rev. Lett., 102(12):127204, 2009.
- D. Rossini, A. Silva, G. Mussardo, and G. E. Santoro. Long time dynamics following a quench in an integrable quantum spin chain: local versus non-local operators and effective thermal behavior. arXiv:1002.2842, 2010.
- S. Sachdev. Quantum Phase Transition. Cambridge University Press, 1999.
- S. Sachdev and A. P. Young. Low temperature relaxational dynamics of the ising chain in a transverse field. Phys. Rev. Lett, 78(11):2220, 1997.
- L. E. Sadler, J. M. Higbie, S. R. Leslie, M. Vengalattore, and D. M. Stamper-Kurn. Spontaneous symmetry breaking in a quenched ferro- magnetic spinor bose-einstein condensate. Nature, 443:312, 2006.
- G. E. Santoro, R. Martoňák, E. Tosatti, and R. Car. Theory of quan- tum annealing of an Ising spin glass. Science, 295:2427, 2002.
- G. E. Santoro and E. Tosatti. Optimization using quantum mechanics: Quantum annealing through adiabatic evolution. J. Phys. A: Math. Gen., 39:R393-R431, 2006.
- L. F. Santos and M. Rigol. Onset of quantum chaos in one-dimensional bosonic and fermionic systems and its relation to thermalization. Phys. Rev. E, 81(3):036206, 2010.
- U. Schollwöck. The density-matrix renormalization group. Rev. Mod. Phys., 77(1):259-315, 2005.
- H. J. Schulz. Phase diagrams and correlation exponents for quan- tum spin chains of arbitrary spin quantum number. Phys. Rev. B, 34(9):6372-6385, 1986.
- R. Schützhold, M. Uhlmann, Y. Xu, and U. R. Fischer. Sweeping from the superfluid to the mott phase in the bose-hubbard model. Phys. Rev. Lett., 97(20):200601, 2006.
- D. Sen, K. Sengupta, and S. Mondal. Defect production in nonlinear quench across a quantum critical point. Phys. Rev. Lett., 101:016806, 2008.
- K. Sengupta, D. Sen, and S. Mondal. Exact results for quench dy- namics and defect production in a two-dimensional model. Phys. Rev. Lett., 100(7):077204, 2008.
- R. Shankar and G. Murthy. Nearest-neighbor frustrated random-bond model in d=2: Some exact results. Phys. Rev. B, 36(1):536-545, 1987.
- S. Sotiriadis, P. Calabrese, and J. Cardy. Quantum quench from a thermal initial state. Europhys. Lett., 87(2):20002, 2009.
- M. Srednicki. Chaos and quantum thermalization. Phys. Rev. E, 50(2):888-901, 1994.
- B. Sutherland. Beautiful Models. World Scientific, 2004.
- A. K. Tuchman, C. Orzel, A. Polkovnikov, and M. A. Kasevich. Nonequilibrium coherence dynamics of a soft boson lattice. Phys. Rev. A, 74(5):051601, 2006.
- L. C. Venuti, C. D. E. Boschi, E. Ercolessi, G. Morandi, F. Ortolani, S. Pasini, and M. Roncaglia. Stable particles in anisotropic spin-1 chains. Eur. Phys. J. B, 53(1):11-18, 2006.
- G. Vidal, J. I. Latorre, E. Rico, and A. Kitaev. Entanglement in quantum critical phenomena. Phys. Rev. Lett., 90(22):227902, 2003.
- N. V. Vitanov. Transition time in the landau-zener model. Phys. Rev. A, 59:988, 1999.
- N. V. Vitanov and B. M. Garraway. Landau-zener model: Effects of finite coupling duration. Phys. Rev. A, 53:4288, 1996.
- J. von Neumann. Beweis des ergodensatzes und des h-theorems in der neuen mechanik. Z. f. Physik, 57:30-70, 1929.
- A. Young. Finite-temperature and dynamical properties of the random transverse-field ising spin chain. Phys. Rev. B, 56:11691, 1997.
- A. P. Young and H. Rieger. Numerical study of the random transverse- field ising spin chain. Phys. Rev. B, 53:8486, 1996.
- V. Zelevinsky, B. Brown, N. Frazier, and M. Horoi. The nuclear shell model as a testing ground for many-body quantum chaos. Phys. Rep., 276:85-176, 1996.
- C. Zener. Non-adiabatic crossing of energy levels. Proc. Royal Soc. A, 137:696, 1932.
- W. H. Zurek. Cosmological experiments in superfluid-helium. Nature, 317:505, 1985.
- W. H. Zurek, U. Dorner, and P. Zoller. Dynamics of a quantum phase transition. Phys. Rev. Lett., 95:105701, 2005.