Academia.eduAcademia.edu

Outline

Influence of NLP Models on Arabic Linguistic Applications

Abstract

This study investigates the influence of various Natural Language Processing (NLP) models on the accuracy and efficiency of Arabic linguistic applications. Employing a systematic review and comparative analysis, the research evaluates rule-based, statistical, machine learning, deep learning, and large language models. Case studies across sentiment analysis, machine translation, text summarization, and named entity recognition highlight performance trade-offs. Key findings indicate that model selection critically depends on task-specific needs, data quality, and computational resources, with large language models offering notable accuracy gains but higher resource demands. The study emphasizes that balancing accuracy and efficiency is essential for practical deployment in Arabic NLP contexts. Its added value lies in providing a unified framework for assessing models, aiding developers and policymakers in optimizing system design for both performance and resource constraints.

References (16)

  1. Ghaddar, A., Wu, Y., Bagga, S., Rashid, A., Bibi, K., Rezagholizadeh, M., Xing, C., Wang, Y., Xinyu, D., Wang, Z., Huai, B., Jiang, X., Liu, Q., & Langlais, P. (2022). Revisiting Pre-trained Language Models and their Evaluation for Arabic Natural Language Understanding. [PDF]
  2. A. S. Yamani, A. (1998). An intelligent question: answering system for natural language. [PDF]
  3. Boujou, E. M., Chataoui, H., El Mekki, A., Benjelloun, S., Chairi, I., & Berrada, I. (2021). An open access NLP dataset for Arabic dialects : Data collection, labeling, and model construction.
  4. Meftouh, K., Smaïli, K., & Tayeb Laskri, M. (2009). Statistical N-gram Models. [PDF]
  5. Mohamed, E. & Sadat, F. (2014). Hybrid Arabic���French machine translation using syntactic re-ordering and morphological pre-processing.
  6. Nassar, A. & Sezer, E. (2022). Multilevel sentiment analysis in arabic. [PDF]
  7. Albalawi, Y., Buckley, J., & S. Nikolov, N. (2021). Investigating the impact of pre-processing techniques and pre-trained word embeddings in detecting Arabic health information on social media. ncbi.nlm.nih.gov
  8. Mohamed, O. & A. Aly, S. (2021). Arabic Speech Emotion Recognition Employing Wav2vec2.0 and HuBERT Based on BAVED Dataset.
  9. Raza Ali, A., Ajmal Siddiqui, M., Algunaibet, R., & Raza Ali, H. (2022). A Large and Diverse Arabic Corpus for Language Modeling.
  10. Zalmout, N. & Habash, N. (2019). Joint Diacritization, Lemmatization, Normalization, and Fine- Grained Morphological Tagging. [PDF]
  11. Harrat, S., Meftouh, K., Abidi, K., & Smaïli, K. (2019). Automatic identification methods on a corpus of twenty five fine-grained Arabic dialects. [PDF]
  12. Bessou, S. & Aberkane, R. (2019). Subjective Sentiment Analysis for Arabic Newswire Comments.
  13. M. Wazery, Y., E. Saleh, M., Alharbi, A., & A. Ali, A. (2022). Abstractive Arabic Text Summarization Based on Deep Learning. ncbi.nlm.nih.gov
  14. Kamal Eddine, M., Tomeh, N., Habash, N., Le Roux, J., & Vazirgiannis, M. (2022). AraBART: a Pretrained Arabic Sequence-to-Sequence Model for Abstractive Summarization. [PDF]
  15. Taha Abdulla Aljumaily, H., Martínez, P., Luis Martínez Fernández, J., & Van Der Goot, E.
  16. A real time Named Entity Recognition system for Arabic text mining. [PDF]