Academia.eduAcademia.edu

Outline

Photonic-bandgap microcavities in optical waveguides

1997, Nature

https://doi.org/10.1038/36514

References (10)

  1. Joannopoulos, J. D., Villeneuve, P. R. & Fan, S. Photonic crystals: putting a new twist on light. Nature 386, 143-149 (1997).
  2. Soukoulis, C. M. (ed.) Photonic Band Gap Materials (Kluwer, Dordrecht, 1996).
  3. Joannopoulos, J. D., Meade, R. D. & Winn, J. N. Photonic Crystals (Princeton, New York, 1995).
  4. Yablonovitch, E. Photonic band-gap structures. J. Opt. Soc. Am. B 10, 283-295 (1993).
  5. Kraus, T., De La Rue, R. & Band, S. Two-dimensional photonic bandgap structures operating at near- infrared wavelengths. Nature 383, 699-702 (1996).
  6. Gru ¨ning, U., Lehmann, V., Ottow, S. & Busch, K. Macroporous silicon with a complete two- dimensional photonic bandgap centered at 5 m. Appl. Phys. Lett. 68, 747-749 (1996).
  7. Fan, S., Winn, J. N., Devenyi, A., Chen, J. C., Meade, R. D. & Joannopoulos, J. D. Guided and defect modes in periodic dielectric waveguides. J. Opt. Soc. Am. B 12, 1267-1272 (1995).
  8. Yang, I. Y. et al. Combining and matching optical, e-beam and x-ray lithographies in the fabrication of Si CMOS circuits with 0.1 and sub-0.1 m features. J. Vacuum Sci. Technol. B 13, 2741-2744 (1995).
  9. Foresi, J. S. thesis, MIT (1997).
  10. Yokoyama, H. & Brorson, S. D. Rate equation analysis of microcavity lasers. J. Appl. Phys. 66, 4801- 4805 (1989).