Large-scale image annotation using visual synset
2011, 2011 International Conference on Computer Vision
https://doi.org/10.1109/ICCV.2011.6126295Abstract
We address the problem of large-scale annotation of web images. Our approach is based on the concept of visual synset, which is an organization of images which are visually-similar and semantically-related. Each visual synset represents a single prototypical visual concept, and has an associated set of weighted annotations. Linear SVM's are utilized to predict the visual synset membership for unseen image examples, and a weighted voting rule is used to construct a ranked list of predicted annotations from a set of visual synsets. We demonstrate that visual synsets lead to better performance than standard methods on a new annotation database containing more than 200 million images and 300 thousand annotations, which is the largest ever reported.
References (25)
- K. Barnard, P. Duygulu, D. Forsyth, N. Freitas, D. Blei, and M. Jordan. Matching words and pictures. JMLR, 2003. 2
- W. Bi and J. T. Kwok. Multi-label classification on tree-and dag-structured hierarchies. ICML, 2011. 2
- N. Cesa-Bianchi, C. Gentile, and L. Zaniboni. Incremental algorithms for hierarchical classification. JMLR, 2006. 2
- P. Ciaccia, M. Patella, and P. Zezula. M-tree: An efficient access method for similarity search in metric spaces. VLDB, 1997. 6
- J. Deng, A. Berg, K. Li, and F. fei Li. What does classifying more than 10,000 image categories tell us? ECCV, 2010. 1, 3
- J. Deng, W. Dong, R. Socher, L. Li, K. Li, and F.-F. Li. Ima- genet: A large hierarchical image database. CVPR, 2009. 1, 2, 3
- T. Deselaers and V. Ferrari. Visual and semantic similarity in imagenet. CVPR, 2011. 5
- A. Farhadi, I. Endres, D. Hoiem, and D. Forsyth. Describing objects by their attributes. CVPR, 2009. 2
- B. J. Frey and D. Dueck. Clustering by passing messages between data points. Science, 2007. 3
- A. Frome, Y. Singer, F. Sha, and J. Malik. Learning globally- consistent local distance functions for shape-based image re- trieval and classification. ICCV, 2007. 3
- M. Guillaumin, T. Mensink, J. Verbeek, and C. Schmid. Tagprop: Discriminative metric learning in nearest neighbor models for image auto-annotation. ICCV, 2009. 7
- M. J. Huiskes and M. S. Lew. The mir flickr retrieval evalu- ation. MIR, 2008. 7
- Y. Jing, M. Covell, and H. Rowley. Comparison of cluster- ing approaches for summarizing large population of images. ICME VCIDS, 2010. 6
- Y. Jing, H. Rowley, C. Rosenberg, J. Wang, and M. Covell. Visualizing web images via google image swirl. NIPS work- shop on Statistical Machine Learning for Visual Analytics, 2009. 1, 3
- T. Liu, A. Moore, A. Gray, and K. Yang. An investigation of practical approximate nearest neighbor algorithms. NIPS, 2004. 6
- A. Makadia, V. Pavlovic, and S. Kumar. Baselines for image annotation. IJCV, 2010. 2
- F. Monay and D. Gatica-Perez. Plsa-based image auto- annotation: Constrining the latent space. ACM Multimedia, 2004. 2
- A. Ng, M. Jordan, and Y. Weiss. On spectral clustering: Analysis and an algorithm. NIPS, 2002. 6
- S. Ponzetto and M. Strube. Deriving a large scale taxonomy from wikipedia. AAAI, 2007. 7
- S. Shalev-Schwartz, Y. Singer, and N. Srebro. Pegasos: pri- mal estimated sub-gradient solver for svm. ICML, 2007. 4
- A. Torralba, R. Fergus, and W. Freeman. 80 million tiny images: a large dataset for non-parametric object and scene recognition. PAMI, 2008. 1, 4
- X. Wang, L. Zhang, M. Liu, Y. Li, and W. Ma. Arista -image search to annotation on billions of web photos. CVPR, 2010. 1, 2
- J. Weston, S. Bengio, and N. Usunier. Large scale image annotation: Learning to rank with joint word-image embed- dings. Machine Learning Journal, 2010. 2, 5
- O. Yakhnenko and V. Honavar. Annotating images and image objects using a hierarchical dirichlet process model. MDM, 2008. 2
- Y.-T. Zheng, M. Zhao, S.-Y. Neo, T.-S. Chua, and Q. Tian. Visual synset: Towards a higher-level visual representation. CVPR, 2008. 1