Academia.eduAcademia.edu

Outline

Review of prognostic problem in condition-based maintenance

2009, 2009 European Control Conference (ECC)

https://doi.org/10.23919/ECC.2009.7074633

Abstract

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

References (54)

  1. T. Brotherton, G. Jahns, J. Jacobs and D. Wroblewski, "Prognosis of faults in gas turbine engines", in Proc. IEEE International Conference on Aerospace, Vol. 6, pp. 163-171, 2000.
  2. A.K.S. Jardine, D. Lin and D. Banjevic, "A review on machinery diagnostics and prognostics implementing condition-based maintenance", Mech. Sys. & Sig. Pro., Vol. 20, pp. 1483-1510, 2006.
  3. F.E. Ciarapica and G. Giacchetta, "Managing the condition-based maintenance of a combined-cycle power plant: an approach using soft computing techniques", Journal of Loss Prevention in the Process Industries, Vol. 19, pp. 316-325, 2006.
  4. A. Heng, S. Zhang, A. Tan and J. Matwew, "Rotating machinery prognostics: State of the art, challenges and opportunities", Mech. Systems and Signal Processing, Vol. 23(3), pp. 724-739, 2008.
  5. EN 13306, Maintenance terminology. European Standard, CEN/TC 319 -AFNOR, june 2001.
  6. C.R. Farrar, F. Hemez, G. Park, A.N. Robertson, H. Sohn and T.O. Williams, "A Coupled Approach to Developing Damage Prognosis Solutions", in: Damage Assessment of Structures -The 5th Intern. Conf. on Damage Assessment of Structures (DAMAS 2003), 2003.
  7. A. Rytter, "Vibration Based Inspection of Civil Engineering Structures", PhD Thesis, 1993.
  8. D. Lin and V. Makis, "Recursive filters for a partially observable system subject to random failure", Advances in Applied Probability, Vol. 35, pp.207-227., 2003.
  9. ISO, 13381-1, Condition monitoring and diagnostics of machines - prognostics -Part1: General guidelines. Int. Standard, ISO, 2004.
  10. O. Dragomir, R. Gouriveau, N. Zerhouni and F. Dragomir, "Framework for a distributed and hybrid prognostic system", in: 4th IFAC Conf. on Manag. and Control of Prod. and Logistics, 2007.
  11. O. Dragomir, R. Gouriveau and N. Zerhouni, "Adaptive neuro-fuzzy inference system for mid term prognostic error stabilization", Inter. Jour. of Comp. Comm. and Control, Vol. 3, pp. 271-276, 2008.
  12. G. Vachtsevanos, F.L. Lewis, M. Roemer, A. Hess and B. Wu, Intelligent Fault Diagnosis and Prognosis for Engineering Systems, Hoboken, New Jersey, Wiley & Sons, 2006.
  13. K. Goebel and P. Bonissone, "Prognostic information fusion for constant load systems", in: Proceedings of 7th annual Conference on Fusion, vol. 2, 2005, p. 1247-1255.
  14. C. Byington, M. Roemer, G. Kacprzynski and T. Galie, "Prognostic Enhancements to diagnostic Systems for Improved Condition-based maintenance", in: Proc. of IEEE Aerospace Conference, 2002.
  15. W. Bartelmus and R. Zimroz, "Vibration condition monitoring of planetary gearbox under varying external load", Mechanical Systems and Signal Processing, Vol. 23, pp. 246-257, 2009.
  16. G.J. Kacprzynski, A. Sarlashkar and M.J. Roemer, "Predicting remaining life by fusing the physics of failure modeling with diagnostics", Journal of Metal, Vol. 56, pp. 29-35, 2004.
  17. D. Chelidze and J.P. Cusumano, "A dynamical systems approach to failure prognosis", J. of Vibr. and Acoustics, Vol. 126, pp. 2-8, 2004.
  18. J. Luo, A. Bixby, K. Pattipati, L. Qiao, M. Kawamoto and S. Chigusa, "An interacting multiple model approach to model-based prognostics", Syst. Secur. and Assurance, Vol. 1, pp. 189-194, 2003.
  19. C.H. Oppenheimer and K.A. Loparo, "Physically based diagnosis and prognosis of cracked rotor shafts", in: Comp. & Syst. Diagnostics, Prognostics, and Health Manag. II, Vol. 4733, pp. 122-132, 2002.
  20. D.E. Adams, "Nonlinear damage models for diagnosis and prognosis in structural dynamic systems", in SPIE Conference Proceedings, Vol. 4733, pp. 180-191, 2002.
  21. D. Chelidze, "Multimode damage tracking and failure prognosis in electromechanical system", in SPIE Conference Proceedings, Vol. 4733, pp. 1-12, 2002.
  22. Y. Li, S. Billington, C. Zhang, T. Kurfess, S. Danyluk, and S. Liang, "Adaptive prognostics for rolling element bearing condition", Mech. Systems and Signal Processing, Vol. 13, pp. 103-113, 1999.
  23. Y. Li, T. R. Kurfess and S. Y. Liang, "Stochastic prognostics for rolling element bearings", Mechanical Systems and Signal Processing, Vol. 14, pp. 747-762, 2000.
  24. A. Ray and S. Tangirala, "Stochastic modeling of fatigue crack dynamics for on-line failure prognostics", IEEE Transactions on Control Systems Technology, Vol.4, pp. 443-451, 1996.
  25. C. Cempel, H.G. Natke and M. Tabaszewski, "A passive diagnostic experiment with ergodic properties", Mechanical Systems and Signal Processing, Vol. 11, pp. 107-117, 1997.
  26. J. Qiu, C. Zhang, B. B. Seth and S. Y. Liang, "Damage mechanics approach for bearing lifetime prognostics", Mechanical Systems and Signal Processing, Vol. 16, pp. 817-829, 2002.
  27. C. Cempel, "Simple condition forecasting techniques in vibroacustical diagnostics", Mechanical Systems and Signal Processing, Vol. 1(1), pp. 75-82, 1987.
  28. C. Cempel, Vibroacustic condition monitoring, Ed. Horwood, New York, 1991.
  29. S.J. Engel, B.J. Gilmartin, K. Bongort and A. Hess, "Prognostics, the real issues involved with predicting life remaining", in: 2000 IEEE Aerospace Conference Proceedings, Vol. 6, pp. 457-469, 2000.
  30. G.A. Lesieutre, L. Fang and U. Lee, "Hierarchical failure simulation for machinery prognostics", in: Critical Link: Diagnosis to Prognosis, Haymarket, pp. 103-110, 1997.
  31. J. Luo, M. Namburu, K. Pattipati, L. Qiao, M. Kawamoto and S. Chigusa, "Model-based prognostic techniques", in: Proc. of IEEE Autotestcon, pp. 330-340, 2003.
  32. Y.L. Dong, Y.J. Gu, K. Yang and W.K. Zhang, "A combining condition prediction model and its application in power plant", in: Proceedings of 2004 International Conference on Machine Learning and Cybernetics, Vol. 6, pp. 3474-3478, 2004.
  33. N. Freitas, I.M. Macleod, and J.S. Maltz, "Neural networks for pneumatic actuator fault detection", Transactions of the SAIEE, Vol. 90, pp. 28-34, 1999.
  34. P. Wang and G. Vachtsevanos, "Fault prognostics using dynamic wavelet neural networks", Artificial Intelligence for Engineering Design Analysis and Manufacturing, Vol. 15, pp. 349-365, 2001.
  35. R.C.M. Yam, P.W. Tse, L. Li and P. Tu, "Intelligent predictive decision support system for condition-based maintenance", Inter. Jour. of Adv. Manufacturing Technology, Vol. 17 pp. 383-391, 2001.
  36. S. Zhang and R. Ganesan, "Multivariable trend analysis using neural networks for intelligent diagnostics of rotating machinery", Transactions of the ASME. Journal of Engineering for Gas Turbines and Power, Vol. 119, pp. 378-384, 1997.
  37. R. Zemouri, "Recurrent Radial Basis Function network for Time- Series Prediction", Engin. Appl. of Artificial Intelligence, vol. 16, pp.453-463, 2003.
  38. W.Q. Wang, M.F. Golnaraghi and F. Ismail, "Prognosis of machine health condition using neuro-fuzzy systems", Mechanical Systems and Signal Processing, Vol. 18, pp. 813-831, 2004.
  39. P. Wang, F. Golnaraghi and F. Ismail, "A robust prognostic system for real time industrial applications", in: 4th International Conference on Industrial Automation, 2003.
  40. P. Wang and G. Vachtsevanos, "Fault prognosis using dynamic wavelet neural networks", in: Maintenance and Reliability Conference, 1999.
  41. R.B. Chinnam and P. Baruah, "A neuro-fuzzy approach for estimating mean residual life in condition-based maintenance systems", Inter. J. of Materials and Product Technology, Vol. 20, pp. 166-179, 2004.
  42. J. Yan, M. Koc and J. Lee, "A prognostic algorithm for machine performance assessment and its application", Production Planning and Control, Vol. 15, pp. 796-801, 2004.
  43. D. Lin and V. Makis, "Filters and parameter estimation for a partially observable system subject to random failure with continuous-range observations", Adv. in Applied Prob., Vol. 36, pp. 1212-1230, 2004.
  44. R.B. Chinnam and P. Baruah, "Autonomous diagnostics and prognostics through competitive learning driven HMM-based clustering", in: Proceedings of the International Joint Conference on Neural Networks, Vol. 1-4, pp. 2466-2471, 2003.
  45. C. Kwan, X. Zhang, R. Xu and L. Haynes, "A novel approach to fault diagnostics and prognostics", in: Proceedings of the 2003 IEEE Inter. Conf. on Robotics and Automation, Vol. 1-3, pp. 604-609, 2003.
  46. P.J. Vlok, M. Wnek and M. Zygmunt, "Utilising statistical residual life estimates of bearings to quantify the influence of preventive maintenance actions", Mechanical Systems and Signal Processing, Vol 18, pp. 833-847, 2004.
  47. W. Wang, "A model to predict the residual life of rolling element bearings given monitored condition information to date", IMA Journal of Management Mathematics, Vol. 13, pp. 3-16, 2002.
  48. W. Wang and A. Wong, "Autoregressive model based gear fault diagnosis", J. of Vib. and Acoustics, Vol. 124, pp. 172-179, 2002.
  49. E. Phelps, P. Willett, and T. Kirubarajan, "A statistical approach to prognostics", in: Component and Systems Diagnostics, Prognosis and Health Management, Vol. 4389, pp. 23-34, 2001.
  50. W. Yang, "Towards dynamic model-based prognostics for transmission gears", in: SPIE Conference Proceedings, Vol. 4733, pp. 157-167, 2001.
  51. D. Swanson, "A general prognostic tracking algorithm for predictive maintenance", Proc. IEEE International Conference on Aerospace, Vol. 6, pp. 2971-2977, 2001.
  52. W. Wang, P. A. Scarf and M. A. J. Smith, "On the application of a model of condition-based maintenance", Journal of the Operational Research Society, Vol. 51, pp. 1218-1227, 2000.
  53. K. B. Goode, J. Moore and B. J. Roylance, "Plant machinery working life prediction method utilizing reliability and condition-monitoring data", in: Proc. of the Inst. of Mechanical Engineers Part E-Journal of Process Mechanical Engineering, Vol.214, pp. 109-122, 2000.
  54. A.K. Garga, K.T. Meclmtic, R.L. Campbell, C.C. Vang and M.S. Lebolil, "Hybrid reasoning for prognostic learning in cbm systems", in: Proc. of IEEE Aerospace Conf., Vol. 6, pp. 2957-2969, 2001.