Academia.eduAcademia.edu

Outline

Dynamics of Circumstellar Disks. II. Heating and Cooling

2000, The Astrophysical Journal

https://doi.org/10.1086/308238

Abstract

We present a series of 2-dimensional (r, φ) hydrodynamic simulations of marginally self gravitating (M D /M * =0.2, with M * = 0.5M ⊙ and with disk radius R D = 50 and 100 AU) disks around protostars using a Smoothed Particle Hydrodynamic (SPH) code. We implement simple and approximate prescriptions for heating via dynamical processes in the disk. Cooling is implemented with a simple radiative cooling prescription which does not assume that local heat dissipation exactly balances local heat generation. Instead, we compute the local vertical (z) temperature and density structure of the disk and obtain 'photosphere temperature', which is then used to cool that location as a black body. We synthesize spectral energy distributions (SEDs) for our simulations and compare them to fiducial SEDs derived from observed systems, in order to understand the contribution of dynamical evolution to the observable character of a system. We find that these simulations produce less distinct spiral structure than isothermally evolved systems, especially in approximately the inner radial third of the disk. Pattern amplitudes are similar to isothermally evolved systems further from the star but do not collapse into condensed objects. We attribute the differences in morphology to increased efficiency for converting kinetic energy into thermal energy in our current simulations. Our simulations produce temperatures in the outer part of the disk which are very low (∼ 10 K). The radial temperature distribution of the disk photosphere is well fit to a power law with index q ∼ 1.1. Far from the star, corresponding to colder parts of the disk and long wavelength radiation, known internal heating processes (P dV work and shocks) are not responsible for generating a large fraction of the thermal energy contained in the disk matter. Therefore gravitational torques responsible for such shocks cannot transport mass and angular momentum efficiently in the outer disk. Within ∼5-10 AU of the star, rapid break up and reformation of spiral structure causes shocks, which provide sufficient dissipation to power a larger fraction of the near infrared radiated energy output. In this region, the spatial and size distribution of grains can have marked consequences on the observed near infrared SED of a given disk, and can lead to increased emission and variability on ∼ < 10 year time scales. The inner disk heats to the destruction temperature of dust grains. Further temperature increases are prevented by efficient cooling when the hot disk midplane is exposed. When grains are vaporized in the midplane of a hot region of the disk, we show that they do not reform into a size distribution similar to that from which most opacity calculations are based. With rapid grain reformation into the original size distribution, the disk does not emit near infrared photons. With a plausible modification of the opacity, it contributes much more.

References (62)

  1. Adams, F. C., Lada, C. & Shu, F. H., 1987, ApJ, 312, 788
  2. Adams, F. C., Lada, C. & Shu, F. H., 1988, ApJ, 326, 865
  3. Adams, F. C., Emerson, J. P. & Fuller, G. A. 1990, ApJ, 357, 606
  4. Alexander, D. R., Ferguson, J. W., 1994, ApJ, 437, 879
  5. Artymowicz, P., Lubow, S. H., 1996, ApJ, 467, L77
  6. Balsara, D., 1995, J. Comp. Phys, 121, 357
  7. Bate, M. R., Bonnell, I. A., 1997, MNRAS, 285, 33
  8. Beckwith, S. V. W., Sargent, A. I., Chini, R. S. & Güsten, R., 1990, AJ, 99, 924 (BSCG)
  9. Bell, K. R., Lin, D. N. C., 1994, ApJ, 427, 987 (BL94)
  10. Bell, K. R., Lin, D. N. C., Hartmann, L. W., Kenyon, S. J., 1995, ApJ, 444, 376
  11. Bell, K. R., Cassen, P. M., Klahr, H. H. & Henning, Th., 1997, ApJ, 486, 372 (BCKH)
  12. Benz, W., 1990, in The Numerical Modeling of Nonlinear Stellar Pulsations p. 269, J. R. Buchler ed. Bonnell, I. A. & Bate, M. R., 1997, MNRAS, 285, 33
  13. Boss, A., 1995, ApJ, 439, 224
  14. Boss, A., 1997, Science, 276, 1836
  15. Boss, A., 1998, ApJ, 503, 923
  16. Cassen, P. M. & Moosman A., 1981, Icarus, 48, 353
  17. Chiang, E. I. & Goldreich, P., 1997, ApJ, 490, 368
  18. Chick, K. M., Pollack, J. B. & Cassen P., 1996, ApJ, 461, 956
  19. Close, L. M., Roddier, F., Northcott, M. J. Roddier, C., Graves, J. E., 1997, ApJ, 478, 766
  20. D'Alessio, P., Canto, J., Calvet, N., Lizano, S., 1998, ApJ, 500, 411
  21. D'Alessio, P., Canto, J., Calvet, N., Lizano, S., 1999, ApJ, 511, 896
  22. Frank, J., King, A. R., Raine, D. J., 1992, Accretion Power in Astrophysics, Second Ed., Cambridge University Press: Cambridge
  23. Fukue, J., Sakamoto, C., 1992, PASJ, 44, 553
  24. Gammie, C., 1996, ApJ, 457, 355
  25. Goldreich, P., Goodman, J., Narayan, R., 1986, MNRAS, 221, 339
  26. Hartigan, P., Edwards, S., Ghandour, L., 1995, ApJ, 452, 736
  27. Henning, Th., Stognienko, R., 1996, A&A, 311, 291
  28. Herbst, W., Shevchenko, V. S., 1999, ApJ, In press.
  29. Kim, S.-H., Martin, P. G., Hendry, P. D., 1994, ApJ422, 164
  30. Klahr, H. H., Henning, Th., Kley, W., 1999, ApJ, 514, 325
  31. Larson, R. B., 1989, in The Formation and Evolution of Planetary Systems, ed. Weaver, H. A., Danly, L., Cambridge University Press: Cambridge
  32. Laughlin, G., Bodenheimer, P., 1994, ApJ, 436, 335
  33. Laughlin, G., Różyczka, M., 1996, ApJ, 456, 279
  34. Laughlin, G., Korchagin, V., Adams, F. C., 1997, ApJ, 477, 410
  35. Mathis, J. S., Rumpl, W. & Nordsieck, K. H., 1977, ApJ, 217, 425
  36. McCaughrean, M. J., O'Dell, C. R., 1996, AJ, 111, 1977
  37. Miyake, K., Nakagawa, Y., 1993, Icarus, 106, 20
  38. Monaghan, J. J., 1992, ARA&A, 30, 543
  39. Monaghan, J. J. & Gingold, R. A., 1983, J. Comp. Phys., 52, 374
  40. Morris, J. P., Monaghan, J. J., 1997, J. Comp. Phys., 136, 41
  41. Murray, J., 1995, PhD thesis: Monash University Murray, J., 1996, MNRAS, 279, 402
  42. Nelson, A. F., Benz W., Adams, F. C., Arnett, W. D., 1998, ApJ, 502, 342 (Paper I )
  43. O'Dell, C. R., Wen, Z., 1994, ApJ, 436, 194
  44. Osterloh, M., Beckwith, S. V. W., 1995, ApJ439, 288
  45. Pickett, B. K., Durisen, R. H., Link, R., 1997, Icarus, 126, 243
  46. Pickett, B. K., Cassen, P., Durisen, R. H., Link, R., 1998, ApJ, 504, 468
  47. Pickett, B. K., Cassen, P., Durisen, R. H., Link, R., 1999, ApJ, Submitted.
  48. Pollack, J. B., McKay, C. P., Christofferson, B. M., 1985, Icarus, 64, 471 (PMC)
  49. Pollack, J. B., Hollenbach, D., Beckwith, S., Simonelli, D. P., Roush, T. & Fong, W., 1994, ApJ, 421, 615
  50. Roddier, C., Roddier, F., Northcott, M. J., Graves, J. E., Jim, K., 1996, ApJ, 463, 326
  51. Shakura, N. J. & Sunyaev, R. A. 1973, A&A, 24, 337
  52. Shu, F. H., Adams, F. C. & Lizano, S., 1987, ARA&A, 25, 23
  53. Shu, F. H., Najita, J., Ostriker, E., Wilkin, F., Ruden, S., Lizano, S., 1994, ApJ, 429, 781
  54. Simonelli, D. P., Pollack, J. B. & McKay, C. P., 1997, Icarus, 125, 261
  55. Skrutskie, M. F., Meyer, M. R., Whalen, D., Hamilton, C., 1996, AJ, 112, 2168
  56. Spaute, D., Weidenschilling, S. J., Davis, D. R., Marzari, F., 1991, Icarus, 92, 147
  57. Turner, N. J. J., Bodenheimer, P. & Bell, K. R., 1997, ApJ, 480, 754 (TBB)
  58. Walker, C. K., Adams, F. C., Lada, C. J., 1990, ApJ, 349, 515
  59. Weidenschilling, S. J., 1984, Icarus, 60, 553
  60. Weidenschilling, S. J., Ruzmaikina, T. V., 1994, ApJ, 430, 713
  61. Weidenschilling, S. J., 1997, Icarus, 127, 290
  62. Wooden, D., Butner, H., Harker, D., Woodward, C., 1999, In prep. This preprint was prepared with the AAS L A T E X macros v4.0. 00000000000000000000000 00000000000000000000000 00000000000000000000000 00000000000000000000000 00000000000000000000000 00000000000000000000000 00000000000000000000000 00000000000000000000000 00000000000000000000000 00000000000000000000000 00000000000000000000000 11111111111111111111111 11111111111111111111111 11111111111111111111111 11111111111111111111111 11111111111111111111111 11111111111111111111111 11111111111111111111111 11111111111111111111111 11111111111111111111111 11111111111111111111111 11111111111111111111111 0000000000000000000000 0000000000000000000000 0000000000000000000000 0000000000000000000000 0000000000000000000000 0000000000000000000000 0000000000000000000000 1111111111111111111111 1111111111111111111111 1111111111111111111111 1111111111111111111111 1111111111111111111111 1111111111111111111111 1111111111111111111111 1111111111111111111111 (a) (b) Central Star Midplane Cool Region: Grains Stable Hot Disk Region: Grains Destroyed Warm Disk: Grain Formation/Destruction Region Central Star Midplane Cool Disk Region: Grains Stable Hot Disk Region: Grains Destroyed Warm Disk: Grain Formation/Destruction Region