A variation norm Carleson theorem
2009, arXiv (Cornell University)
Abstract
We strengthen the Carleson-Hunt theorem by proving L p estimates for the r-variation of the partial sum operators for Fourier series and integrals, for p > max{r ′ , 2}. Four appendices are concerned with transference, a variation norm Menshov-Paley-Zygmund theorem, and applications to nonlinear Fourier transforms and ergodic theory.
References (71)
- Jean Bourgain, Pointwise ergodic theorems for arithmetic sets, Inst. Hautes Études Sci. Publ. Math. (1989), no. 69, 5-45. With an appendix by the author, Harry Furstenberg, Yitzhak Katznelson and Donald S. Ornstein.
- James T. Campbell, Roger L. Jones, Karin Reinhold and Máté Wierdl, Oscillation and variation for the Hilbert transform, Duke Math. J., 105 (2000), 59-83.
- Alberto P. Calderón, Ergodic theory and translation-invariant operators, Proc. Nat. Acad. Sci. U.S.A. 59 (1968) 349-353.
- Lennart Carleson, On convergence and growth of partial sums of Fourier series, Acta Math. 116 (1966), 135-157.
- Michael Christ and Alexander Kiselev, Maximal functions associated to filtrations, J. Funct. Anal. 179 (2001), no. 2, 409-425.
- WKB asymptotic behavior of almost all generalized eigenfunctions for one-dimensional Schrödinger operators with slowly decaying potentials, J. Funct. Anal. 179 (2001), no. 2, 426-447.
- Ronald R. Coifman and Guido Weiss, Transference methods in analysis. Conference Board of the Mathematical Sciences Regional Conference Series in Mathematics, No. 31. American Mathematical Society, Providence, R.I., 1976.
- Ciprian Demeter, Michael T. Lacey, Terence Tao, and Christoph Thiele, Breaking the duality in the return times theorem, Duke Math. J. 143 (2008), no. 2, 281-355.
- The Walsh model for M * 2 Carleson, Rev. Mat. Iberoamericana 24 (2008), no. 3, 721-744.
- Charles Fefferman, Pointwise convergence of Fourier series, Ann. of Math. (2) 98 (1973), 551-571.
- Charles Fefferman and Elias M. Stein, H p spaces of several variables. Acta Math. 129 (1972), no. 3-4, 137-193.
- Loukas Grafakos, Terence Tao, and Erin Terwilleger, L p bounds for a maximal dyadic sum operator, Math. Z. 246 (2004), no. 1-2, 321-337.
- Richard A. Hunt, On the convergence of Fourier series, Orthogonal Expansions and their Continuous Analogues (Proc. Conf., Edwardsville, Ill., 1967), Southern Illinois Univ. Press, Carbondale, Ill., 1968, pp. 235-255.
- Roger L. Jones, Robert Kaufman, Joseph Rosenblatt, and Máté Wierdl, Oscillation in ergodic theory, Erg. Th. & Dyn. Sys., 18 (1998), 889-936.
- Roger L. Jones, Andreas Seeger, and James Wright, Strong variational and jump inequalities in harmonic analysis, Trans. Amer. Math. Soc. 360 (2008), no. 12, 6711-6742.
- Roger L. Jones and Gang Wang, Variation inequalities for the Fejér and Poisson kernels, Trans. Amer. Math. Soc. 356 (2004), no. 11, 4493-4518 .
- Carlos E. Kenig and Peter A. Tomas, Maximal operators defined by Fourier multipliers, Studia Math. 68 (1980), no. 1, 79-83.
- Michael Lacey, Issues related to Rubio de Francia's Littlewood-Paley inequality, NYJM Monographs, 2. State University of New York, University at Albany, Albany, NY, (2007) 36 pp. (electronic).
- Michael Lacey and Erin Terwilleger, A Wiener-Wintner theorem for the Hilbert transform, Ark. Mat. 46 (2008), no. 2, 315-336.
- Michael Lacey and Christoph Thiele, A proof of boundedness of the Carleson operator, Math. Res. Lett. 7 (2000), no. 4, 361-370.
- Karel de Leeuw, On Lp multipliers, Ann. of Math. 81 (1965), 364-379.
- Dominique Lépingle, La variation d'ordre p des semi-martingales, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 36 (1976), no. 4, 295-316.
- Terry Lyons, Differential equations driven by rough signals. I. An extension of an inequality of L. C. Young, Math. Res. Lett. 1 (1994), no. 4, 451-464.
- Differential equations driven by rough signals, Rev. Mat. Iberoamericana 14 (1998), 215- 310.
- Camil Muscalu, Terence Tao, and Christoph Thiele, A Carleson theorem for a Cantor group model of the scattering transform, Nonlinearity 16 (2003), no. 1, 219-246.
- A counterexample to a multilinear endpoint question of Christ and Kiselev, Math. Res. Lett. 10 (2003) no. 2-3, 237-246.
- Gilles Pisier and Quanhua Xu, The strong p-variation of martingales and orthogonal series, Prob. Theory Related Fields, 77 (1988), 497-451.
- Jinghua Qian, The p-variation of partial sum processes and the empirical process, Ann. Probab. 26 (1998), no. 3, 1370-1383.
- Tong Seng Quek, Littlewood-Paley type inequality on R, Math. Nachr. 248/249 (2003), 151-157.
- José L. Rubio de Francia, A Littlewood-Paley inequality for arbitrary intervals, Revista Mat. Iberoamericana 1 (1985), no. 2, 1-14.
- Elias M. Stein and Guido Weiss, Introduction to Fourier analysis on Euclidean spaces. Princeton Mathematical Series, No. 32. Princeton University Press, Princeton, N.J., 1971.
- Terence Tao and Christoph Thiele, Nonlinear Fourier analysis, IAS/Park City Math. Ser., to appear.
- Christoph Thiele, Wave packet analysis, CBMS Regional Conference Series in Mathematics, vol. 105, Published for the Conference Board of the Mathematical Sciences, Washington, DC, 2006.
- Norbert Wiener, The quadratic variation of a function and its Fourier coefficients, MIT Journal of Math. and Physics 3(1924) pp. 72-94.
- R. Oberlin, Department of Mathematics, UCLA, Los Angeles, CA 90095-1555, USA E-mail address: oberlin@math.ucla.edu References
- Jean Bourgain, Pointwise ergodic theorems for arithmetic sets, Inst. Hautes Études Sci. Publ. Math. (1989), no. 69, 5-45. With an appendix by the author, Harry Furstenberg, Yitzhak Katznelson and Donald S. Ornstein.
- James T. Campbell, Roger L. Jones, Karin Reinhold and Máté Wierdl, Oscillation and variation for the Hilbert transform, Duke Math. J., 105 (2000), 59-83.
- Alberto P. Calderón, Ergodic theory and translation-invariant operators, Proc. Nat. Acad. Sci. U.S.A. 59 (1968) 349-353.
- Lennart Carleson, On convergence and growth of partial sums of Fourier series, Acta Math. 116 (1966), 135-157.
- Michael Christ and Alexander Kiselev, Maximal functions associated to filtrations, J. Funct. Anal. 179 (2001), no. 2, 409-425.
- WKB asymptotic behavior of almost all generalized eigenfunctions for one-dimensional Schrödinger operators with slowly decaying potentials, J. Funct. Anal. 179 (2001), no. 2, 426-447.
- Ronald R. Coifman and Guido Weiss, Transference methods in analysis. Conference Board of the Mathematical Sciences Regional Conference Series in Mathematics, No. 31. American Mathematical Society, Providence, R.I., 1976.
- Ciprian Demeter, Michael T. Lacey, Terence Tao, and Christoph Thiele, Breaking the duality in the return times theorem, Duke Math. J. 143 (2008), no. 2, 281-355.
- The Walsh model for M * 2 Carleson, Rev. Mat. Iberoamericana 24 (2008), no. 3, 721-744.
- Charles Fefferman, Pointwise convergence of Fourier series, Ann. of Math. (2) 98 (1973), 551-571.
- Charles Fefferman and Elias M. Stein, H p spaces of several variables. Acta Math. 129 (1972), no. 3-4, 137-193.
- Loukas Grafakos, Terence Tao, and Erin Terwilleger, L p bounds for a maximal dyadic sum operator, Math. Z. 246 (2004), no. 1-2, 321-337.
- Richard A. Hunt, On the convergence of Fourier series, Orthogonal Expansions and their Continuous Analogues (Proc. Conf., Edwardsville, Ill., 1967), Southern Illinois Univ. Press, Carbondale, Ill., 1968, pp. 235-255.
- Roger L. Jones, Robert Kaufman, Joseph Rosenblatt, and Máté Wierdl, Oscillation in ergodic theory, Erg. Th. & Dyn. Sys., 18 (1998), 889-936.
- Roger L. Jones, Andreas Seeger, and James Wright, Strong variational and jump inequalities in harmonic analysis, Trans. Amer. Math. Soc. 360 (2008), no. 12, 6711-6742.
- Roger L. Jones and Gang Wang, Variation inequalities for the Fejér and Poisson kernels, Trans. Amer. Math. Soc. 356 (2004), no. 11, 4493-4518 .
- Carlos E. Kenig and Peter A. Tomas, Maximal operators defined by Fourier multipliers, Studia Math. 68 (1980), no. 1, 79-83.
- Michael Lacey, Issues related to Rubio de Francia's Littlewood-Paley inequality, NYJM Monographs, 2. State University of New York, University at Albany, Albany, NY, (2007) 36 pp. (electronic).
- Michael Lacey and Erin Terwilleger, A Wiener-Wintner theorem for the Hilbert transform, Ark. Mat. 46 (2008), no. 2, 315-336.
- Michael Lacey and Christoph Thiele, A proof of boundedness of the Carleson operator, Math. Res. Lett. 7 (2000), no. 4, 361-370.
- Karel de Leeuw, On Lp multipliers, Ann. of Math. 81 (1965), 364-379.
- Dominique Lépingle, La variation d'ordre p des semi-martingales, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 36 (1976), no. 4, 295-316.
- Terry Lyons, Differential equations driven by rough signals. I. An extension of an inequality of L. C. Young, Math. Res. Lett. 1 (1994), no. 4, 451-464.
- Differential equations driven by rough signals, Rev. Mat. Iberoamericana 14 (1998), 215- 310.
- Camil Muscalu, Terence Tao, and Christoph Thiele, A Carleson theorem for a Cantor group model of the scattering transform, Nonlinearity 16 (2003), no. 1, 219-246.
- A counterexample to a multilinear endpoint question of Christ and Kiselev, Math. Res. Lett. 10 (2003) no. 2-3, 237-246.
- Gilles Pisier and Quanhua Xu, The strong p-variation of martingales and orthogonal series, Prob. Theory Related Fields, 77 (1988), 497-451.
- Gabriel Teodor Pripoae, Vector fields dynamics as geodesic motion on Lie groups C. R. Math. Acad. Sci. Paris 342 (2006), no. 11, 865-868.
- Jinghua Qian, The p-variation of partial sum processes and the empirical process, Ann. Probab. 26 (1998), no. 3, 1370-1383.
- Tong Seng Quek, Littlewood-Paley type inequality on R, Math. Nachr. 248/249 (2003), 151-157.
- José L. Rubio de Francia, A Littlewood-Paley inequality for arbitrary intervals, Revista Mat. Iberoamericana 1 (1985), no. 2, 1-14.
- Elias M. Stein and Guido Weiss, Introduction to Fourier analysis on Euclidean spaces. Princeton Mathematical Series, No. 32. Princeton University Press, Princeton, N.J., 1971.
- Terence Tao and Christoph Thiele, Nonlinear Fourier analysis, IAS/Park City Math. Ser., to appear.
- Christoph Thiele, Wave packet analysis, CBMS Regional Conference Series in Mathematics, vol. 105, Published for the Conference Board of the Mathematical Sciences, Washington, DC, 2006.
- Norbert Wiener, The quadratic variation of a function and its Fourier coefficients, MIT Journal of Math. and Physics 3(1924) pp. 72-94.
- R. Oberlin, Department of Mathematics, Louisiana State University, Baton Rouge, LA 70803-4918, USA