On the Cutting Edge: Simplified O(n) Planarity by Edge Addition
2004, Journal of Graph Algorithms and Applications
https://doi.org/10.7155/JGAA.00091Abstract
We present new O(n)-time methods for planar embedding and Kuratowski subgraph isolation that were inspired by the Booth-Lueker PQ-tree implementation of the Lempel-Even-Cederbaum vertex addition method. In this paper, we improve upon our conference proceedings formulation and upon the Shih-Hsu PC-tree, both of which perform comprehensive tests of planarity conditions embedding the edges from a vertex to its descendants in a 'batch' vertex addition operation. These tests are simpler than but analogous to the templating scheme of the PQ-tree. Instead, we take the edge to be the fundamental unit of addition to the partial embedding while preserving planarity. This eliminates the batch planarity condition testing in favor of a few localized decisions of a path traversal process, and it exploits the fact that subgraphs can become biconnected by adding a single edge. Our method is presented using only graph constructs, but our definition of external activity, path traversal process and theoretical analysis of correctness can be applied to optimize the PC-tree as well.
References (28)
- K. S. Booth and G. S. Lueker. Testing for the consecutive ones property, interval graphs, and graph planarity using PQ-tree algorithms. Journal of Computer and Systems Sciences, 13:335-379, 1976.
- J. Boyer and W. Myrvold. Stop minding your P's and Q's: A simplified O(n) planar embedding algorithm. Proceedings of the Tenth Annual ACM- SIAM Symposium on Discrete Algorithms, pages 140-146, 1999.
- J. M. Boyer. Additional PC-tree planarity conditions. In J. Pach, editor, Proceedings of the 12th International Symposium on Graph Drawing 2004, to appear in Lecture Notes in Computer Science. Springer-Verlag, 2004.
- J. M. Boyer, P. F. Cortese, M. Patrignani, and G. Di Battista. Stop mind- ing your P's and Q's: Implementing a fast and simple DFS-based planarity testing and embedding algorithm. Technical Report RT-DIA-83-2003, Di- partimento di Informatica e Automazione, Universitá di Roma Tre, Nov. 2003.
- J. M. Boyer, P. F. Cortese, M. Patrignani, and G. Di Battista. Stop minding your P's and Q's: Implementing a fast and simple DFS-based planarity testing and embedding algorithm. In G. Liotta, editor, Proceedings of the 11th International Symposium on Graph Drawing 2003, volume 2912 of Lecture Notes in Computer Science, pages 25-36. Springer-Verlag, 2004.
- N. Chiba, T. Nishizeki, A. Abe, and T. Ozawa. A linear algorithm for em- bedding planar graphs using PQ-trees. Journal of Computer and Systems Sciences, 30:54-76, 1985.
- H. de Fraysseix and P. Rosenstiehl. A characterization of planar graphs by trémaux orders. Combinatorica, 5(2):127-135, 1985.
- N. Deo. Note on Hopcroft and Tarjan planarity algorithm. Journal of the Association for Computing Machinery, 23:74-75, 1976.
- G. Di Battista, P. Eades, R. Tamassia, and I. G. Tollis. Graph Drawing: Algorithms for the Visualization of Graphs. Prentice Hall, Upper Saddle River, NJ, 1999.
- S. Even and R. E. Tarjan. Computing an st-numbering. Theoretical Com- puter Science, 2:339-344, 1976.
- A. Gibbons. Algorithmic Graph Theory. Cambridge University Press, 1985.
- J. Hopcroft and R. Tarjan. Efficient planarity testing. Journal of the Association for Computing Machinery, 21(4):549-568, 1974.
- W.-L. Hsu. An efficient implementation of the PC-trees algorithm of shih and hsu's planarity test. Technical Report TR-IIS-03-015, Institute of In- formation Science, Academia Sinica, July 2003.
- M. Jünger, S. Leipert, and P. Mutzel. Pitfalls of using PQ-trees in au- tomatic graph drawing. In G. Di Battista, editor, Proceedings of the 5th International Symposium on Graph Drawing '97, volume 1353 of Lecture Notes in Computer Science, pages 193-204. Springer Verlag, Sept. 1997.
- A. Lempel, S. Even, and I. Cederbaum. An algorithm for planarity testing of graphs. In P. Rosenstiehl, editor, Theory of Graphs, pages 215-232, New York, 1967. Gordon and Breach.
- P. Lieby. Planar graphs. The Magma Computational Algebra System, http://magma.maths.usyd.edu.au/magma/htmlhelp/text1185.htm.
- R. J. Lipton and R. E. Tarjan. Applications of a planar separator theorem. SIAM Journal of Computing, 9(3):615-627, 1980.
- B. D. McKay. Practical graph isomorphism. Congressus Numerantium, 30:45-87, 1981.
- K. Mehlhorn and P. Mutzel. On the embedding phase of the Hopcroft and Tarjan planarity testing algorithm. Algorithmica, 16:233-242, 1996.
- A. Noma. Análise experimental de algoritmos de planaridade. Master's thesis, Universidade de São Paulo, May 2003. in Portuguese.
- E. M. Reingold, J. Nievergelt, and N. Deo. Combinatorial Algorithms: Theory and Practice. Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1977.
- W.-K. Shih and W.-L. Hsu. A simple test for planar graphs. In Proceedings of the International Workshop on Discrete Mathematics and Algorithms, pages 110-122, 1993.
- W.-K. Shih and W.-L. Hsu. A new planarity test. Theoretical Computer Science, 223:179-191, 1999.
- R. E. Tarjan. Depth-first search and linear graph algorithms. SIAM Journal of Computing, 1(2):146-160, 1972.
- A.-M. Törsel. An implementation of the Boyer-Myrvold algorithm for em- bedding planar graphs. University of Applied Sciences Stralsund, Germany, 2003. Diploma thesis, in German.
- D. B. West. Introduction to Graph Theory. Prentice Hall, Inc., Upper Saddle River, NJ, 1996.
- S. G. Williamson. Embedding graphs in the plane-algorithmic aspects. Annals of Discrete Mathematics, 6:349-384, 1980.
- S. G. Williamson. Combinatorics for Computer Science. Computer Science Press, Rockville, Maryland, 1985.