Academia.eduAcademia.edu

Outline

Combinatorial algorithms for the generalized circulation problem

1988

https://doi.org/10.1109/SFCS.1988.21959

Abstract

We consider a generalization of the maximum flow problem in which the amounts of flow entering and leaving an arc are linearly related. More precisely, if x(e) units of flow enter an arc e, z(e)7(e) units arrive at the other end. For instance, nodes of the graph can correspond to different currencies, with the multipliers being the exchange rates. We require conservation of flow at every node except a given source node. The goal is to maximize the amount of flow excess at the source. This problem is a special case of linear programming, and therefore can be solved in polynomial time. In this paper we present the first polynomial time combinat1o ial algorithms for this problem. The algorithms are simple and intuitive.

References (29)

  1. R. K. Ahuja, A. V. Goldberg, J. B. Orlin, and R. E. Tarjan. Finding minimum-cost flows by double-scaling. 1987. Unpublished manuscript.
  2. R. G. Busacker and P. J. Gowen. A Procedure for Determinimg a Family of Minimal- Cost Network Flow Patterns. Technical Report 15, O.R.O., 1961.
  3. R. G. Busacker and T. L. Saaty. Finite Graphs and Networks: An Introduction with Applications. McGraw-Hill, New York, NY., 1965.
  4. J. Elam, F. Glover, and D. Klingman. A strongly convergent primal simplex algorithm for generalized networks. Math. of 0. R., 4:39-59, 1979.
  5. J. Edmonds and R. M. Karp. Theoretical improvements in algorithmic efficiency for network flow problems. J. Assoc. Comput. Mach., 19:248-264, 1972.
  6. L. R. Ford, Jr. and D. R. Fulkerson. Flows in Networks. Princeton Univ. Press, Prince- ton, NJ., 1962.
  7. FTS7 M. L. Fredman and R. E. Tarjan. Fibonacci heaps and their uses in improved network optimization algorithms. J. Assoc. Comput. Mach., 34:596-615, 1987.
  8. F. Glover and D. Klingman. On the equivalence of some generalized network problems to pure network problems. Math. Programming, 4:269-278, 1973.
  9. A. V. Goldberg. Efficient Graph Algorithms for Sequential and Parallel Computers. PhD thesis, M.I.T., January 1987. (Also available as Technical Report TR-374, Lab. for Computer Science, M.I.T., 1987).
  10. A. V. Goldberg and R. E. Tarjan. Solving minimum-cost flow problems by successive j approximation. In Proc. 19th ACM Symp. on Theory of Computing, pages 7-18, 1987.
  11. A. V. Goldberg and R. E. Tarjan. Finding minimum-cost circulations by canceling negative cycles. In Proc. 20th ACM Symp. on Theory of Computing, pages 388-397, 1988.
  12. A. V. Goldberg and R. E. Tarjan. A new approach to the maximum flow problem. JACM, (To appear).
  13. W. S. Jewell. Optimal Flow through Networks. Technical Report 8, M.I.T., 1958.
  14. N. Karmarkar. A new polynomial-time algorithm for linear programming. Combina- torica, 4:373-395, 1984.
  15. L. G. Khachian. Polynomial algorithms in linear programming. Zhurnal Vychislitelnoi Matematiki i Matematicheskoi Fiziki, 20:53-72, 1980.
  16. Kle67I M. Klein. A primal method for minimal cost flows with applications to the assignment and transportation problems. Management Science, 14:205-220, 1967.
  17. S. Kapoor and P. M. Vaidya. Fast algorithms for convex quadratic programming and multicommodity flows. In Proc. 18th ACM Symp. on Theory of Computing, pages 147- 159, 1986.
  18. E. L. Lawler. Combinatorial Optimization: Networks and Matroids. Holt, Reinhart, and Winston, New York, NY., 1976.
  19. N. Megiddo. Towards a genuinely polynomial algorithm for linear programming. SIAM J. Comput., 12:347-353, 1983.
  20. K. Onaga. Dynamic programming of optimum flows in lossy communication nets. IEEE Trans. Circuit Theory, 13:308-327, 1966.
  21. K. Onaga. Optimal flows in general communication networks. J. Franklin Inst., 283:308-327, 1967.
  22. J. B. Orlin. A faster strongly polynomial minimum cost flow algorithm. In Proc. 20th ACM Symp. on Theory of Computing, 1988. 377-387.
  23. P. S. Pulat and S. E. Elmaghraby. On Maximizing Flow in Generalized Flow Networks. Technical Report 202, NC State University, 1984.
  24. D. D. Sleator and R. E. Tarjan. A data structure for dynamic trees. J. Comput. System Sci., 26:362-391, 1983.
  25. D. D. Sleator and R. E. Tarjan. Self-adjusting binary search trees. J. Assoc. Comput. Mach., 32:652-686, 1985.
  26. R. E. Tarjan. Data Structures and Network Algorithms. Society for Industrial and Applied Mathematics, Philadelphia, PA, 1983.
  27. L. Tardos. A strongly polynomial minimum cost circulation algorithm. Combinatorica, 5(3):247-255, 1985.
  28. E. Tardos. A strongly polynomial algorithm for solving combinatorial linear programs. Operations Research, 250-256, 1986.
  29. P. M. Vaidya. An algorithm for linear programmin that requires O(((m + 7)n 2 + (m+ n)'"Sn)L) arithmetic operations. In Proc. 19th ACM Symp. on Theory of Computing, pages 29-38, 1987.