Academia.eduAcademia.edu

Outline

Targeting Control of Chaotic Systems

2003

Abstract

Targeting control of chaos is concerned with taking advantage of sen- sitive dependence to initial conditions to coax a dynamical system to following a desirable trajectory. In other words, it is taking advantage of the butterfly effect so that the rich spectrum of possible trajectories embedded within a chaotic attractor can be selected with extremely small energy input. We review historical and pop- ular approaches which fall under this general area in an attempt to reveal these techniques in a useful manner for applied scientists.

References (67)

  1. Lorenz, E. N. (1963) Deterministic nonperiodic flow. J. Atmos. Sci., 20:130-141
  2. Ott, E., Grebogi, C., Yorke, J. A. (1990) Controlling chaos. Phys. Rev. Lett., 64:1196-1199
  3. Romerias, F., Grebogi, C., Ott, E., Dayawansa, W. (1992) Contolling chaotic dynamical systems. Physica D, 58(1002):165-192
  4. Hirsch, M., Smale, S. (1974) Differential Equations, Dynamical Systems and Linear Algebra. New York: Academic Press
  5. Bollt, E., Kostelich, E., (1998) Optimal targeting of chaos. Phys. Lett. A, 245(5):399-406
  6. Shinbrot, T., Ott, E., Grebogi, C., Yorke, J. A. (1992) Using chaos to direct orbits to targets in systems describable by a one-dimensional map. Phys. Rev. A, 45:4165-4168
  7. Shinbrot, T., Grebogi, C., Ott, E., Yorke, J. A. (1993) Using small perturbations to control chaos. Nature, 363:411-417
  8. Bollt, E. (1997) Controlling the chaotic logistic map. PRIMUS (Problems Re- sources, and Issues in Mathematics Undergraduate Studies), VII(1):1-18
  9. Shinbrot, T., Ditto, W., Grebogi, C., Ott, E., Spano, M. L., Yorke, J. A. (1992) Using the sensitive dependence of chaos to direct orbits to targets in an experi- mental chaotic systems. Phys. Rev. Lett., 68:2863-2866
  10. Dolnik, M., Bollt, E. (1998) Communication with chemical chaos in the presence of noise. Chaos, 8(3):702-710, Bollt, E., Dolnik, M. (1997) Encoding information in chemical chaos by controlling symbolic dynamics. Phys. Rev. E, 55: 6404-6413
  11. Shinbrot, T., Ott, E., Grebogi, C., Yorke, J. A. (1990) Using chaos to direct trajectories to targets. Phys. Rev. Lett., 65:3215-3218
  12. Bollt, E. (1995) Controlling Chaos, Targeting, and Transport. Ph.D thesis, U. Colorado, Boulder
  13. Lai, Y. C., Ding, M., Grebogi, C. (1993) Controlling Hamiltonian chaos. Phys. Rev. E, 47:86-92
  14. Bollt, E., Meiss, J. D. (1995) Targeting chaotic orbits to the moon through recurrence. Phys. Lett. A, 204:373-378
  15. Bollt, E., Meiss, J. D. (1995) Controlling chaos through recurrence. Physica D, 81:280-294
  16. Kostelich, E. J., Grebogi, C., Ott, E., Yorke, J. A. (1993) Higher dimensional targeting. Phys. Rev. E, 47:305-310
  17. Barreto, E., Kostelich, E. J., Grebogi, C., Ott, E., Yorke, J. A. (1995) Effi- cient switching between controlled unstable periodic orbits in higher dimensional chaotic systems. Phys. Rev. E, 51:4169-4172
  18. Kostelich, E. J., Barreto, E. (1997) Targeting and control of chaos. In Con- trol and Chaos, ed. by Judd, K., Mees, A., Teo, K. L., Vincent, T. L. Boston: Birkhäuser, 158-169
  19. Kostelich, E., Yorke, J. A. (1987) Lorenz cross sections of the chaotic attractor of the double rotor. Physica D, 24:263-278
  20. Arrowsmith, D. K., Place, C. H. (1990) Introduction to Dynamical Systems. London: Cambridge Univ. Press
  21. Meiss, J. D. (1992) Symplectic maps, variational principles, and transport. Reviews of Modern Physics, 64:795-848
  22. Mather, J. N. (1991) Variational construction of orbits of twist diffeomorphisms. J. Am. Math. Soc., 4:207-263
  23. Hanson, J., Cary, J., Meiss, J. (1985) 'Algebraic decay in self-similiar Markov chains. J. Stat. Phys., 39(3/4):327-345
  24. Meiss, J. D., Ott, E. (1987) Markov tree model of transport in area preserving maps. Physica D, 20:387-402
  25. Devaney, R. L. (1989) An Introduction to Chaotic Dynamical Systems. 2nd ed. Redwood City, CA: Addison Wesley
  26. Martelli, M., Dong, M., Seph, T. (1998) Defining chaos. Mathematics Magazine, 71(2):112-122
  27. Schroer, C. G., Ott, E. (1997) argeting in Hamiltonian systems that have mixed regular/chaotic phase spaces. Chaos. Focus Issue: Control and Synchronization of Chaos, 7(4):512-519
  28. Szebehely, V. (1967) Theory of Orbits the Restricted Problem of Three Bodies. New York: Academic Press
  29. Bollt, E. (2001) Combinatorial control of global dynamics in a chaotic differ- ential equation. Int. J. Bifur. Chaos, 11(8):2145-2162
  30. Rudolph, D. J. (1990) Fundamentals of Measurable Dynamics, Ergodic Theory on Lebesgue Spaces. Oxford: Clarendon Press
  31. Bollt, E., Stanford, T., Lai, Y. -C., Zyczkowski, K. (2001) What symbolic dy- namics do we get with a misplaced partition? on the validity of threshold cross- ings analysis of chaotic time-series. Physica D, 154(3/4):259-286
  32. Bollt, E., Stanford, T., Lai, Y. -C., Zyczkowski, K. (2000) Validity of threshold- crossing analysis of symbolic dynamics from chaotic time series. Phys. Rev. Lett. 85(16):3524-3527
  33. Bollt, E. (2003) Review of chaos communication by feedback control of symbolic dynamics. Int. J. Bifur. Chaos, to appear
  34. Dolnik, M., Bollt, E. (1998) Communication with chemical chaos in the presence of noise. Chaos, 8(3):702-710
  35. Bollt, E., Lai, Y. -C., Grebogi, C. (1997) Analysis of the topological entropy versus noise resistance trade-off when communicating with chaos. Phys. Rev. Lett., 79(19):3787-3790
  36. Hayes, S., Grebogi, C., Ott, E., Mark, A. (1994) Experimental control of chaos for communication. Phys. Rev. Lett., 73:1781-1784
  37. Hayes, S., Grebogi, C., Ott, E. (1993) Communicating with chaos. Phys. Rev. Lett., 70:3031-3034
  38. Gould, R. (1988) Graph Theory. Menlo Park, CA: Benjamin/Cummings Pub- lishing
  39. Bondy, J. A., Murty, U. S. R. (1976), Graph Theory with Applications. New York: American Elsevier
  40. de Melo, W., van Strein, S. (1992) One-Dimensional Dynamics. New York: Springer-Verlag
  41. Milnor, J., Thurston, W. (1997) On Iterated Maps of the Interval: I and II. Princeton: Princeton Univ. Press
  42. Kitchens, B. P. (1998) Symbolic Dynamics, One-sided, Two-sided and Count- able State Markov Shifts. New York: Springer-Verlag
  43. Lind, D., Marcus, B. (1995) An Introduction to Symbolic Dynamics and Cod- ing. New York: Cambridge Univ. Press
  44. Cvitanovic, P. Gunaratne, G., Procaccia, I. (1988) Topological and metric prop- erties of Hénon-type attractors. Phys. Rev. A, 38:1503-1520
  45. Cvitanovic, P. (1991) Periodic orbits as the skeleton of classical and quantum chaos. Physica D, 51:138-151
  46. Cvitanovic, P. (1995) Dynamical averaging in terms of periodic orbits. Physica D, 83:109-123
  47. Grassberger, P., Kantz, H., Moenig, U. (1989) On the symbolic dynamics of the Henon map. J. Phys. A, 22:5217-5230
  48. Smale, S. (1967) Differentiable dynamical systems. Bull AMS, 73:747-817
  49. Bowen, R. (1970) Markov partitions for axiom A diffeomorphisms. Am. J. Math, 92:725-747
  50. Bowen, R. (1975) Equilibrium States and the Ergodic Theory of Anosov Dif- feomorphisms. Berlin: Springer-Verlag
  51. Bowen, R. (1975) Equilibrium States and the Ergodic Theory of Anosov Dif- feomorphisms. Berlin: Springer-Verlag
  52. Christiansen, F., Politi, A. (1996) Symbolic encoding in symplectic maps. Non- linearity, 9:1623-1640
  53. Christiansen F., Politi A. (1997) Guidlines for the construction of a generating partition in the standard map. Physica D, 109:32-41
  54. Hansen, K. (1992) Pruning of orbits in four-disk and hyperbola billiards. Chaos, 2:71-75
  55. Hansen, K. (1993) Symbolic dynamics. I. Finite dispersive billiards. Nonlinear- ity, 6:753-769
  56. Place, C. M., Arrowsmith ,D. K. (2000) Control of transient chaos in tent maps near crisis. I: Fixed points. Phys. Rev. E, 61(2):1357-1368; II: Periodic orbits. 1369-1381
  57. Neter, J., Kutner, M. H., Nachtsheim, C. J., Wasserman, W. (1996) Applied Linear Regression Models. 3rd ed. Chicago: IRWIN
  58. Press, W., Flannery, B., Teukolsky, S., Vetterling, W. (1988) Numerical Recipes in C: The Art of Scientific Computing. New York: Cambridge Univ. Press
  59. Pyragas, K. (1992) Continuous control of chaos by self-controlling feedback. Phys. Lett. A, 170:421-428
  60. Boccaletti, S., Arecchi, F. T. (1996) Adaptive recognition and control of chaos. Physica D, 96:9-16
  61. Arecchi, F. T., Bsti, G., Boccaletti, S., Perrone, A. L. (1994) Adaptive recog- nition of a chaotic dynamics. Europhys. Lett., 26:327-332
  62. Boccalletti, S., Grebogi, C., Lai, Y. -C., Mancini, H., Maza, D. (2000) The control of chaos: theory and applications. Phys. Rep., 329:103-197
  63. Boccalleti, S., Fairini, A., Kostelich, E. J., Arecchi, F. T. (1997) Adaptive targeting of chaos. Phys. Rev. E,. 55:R4845-R4848
  64. Corron, N., Pethel, S. (2002) Control of long periodic orbits and and arbitrary trajectories in chaotic systems using dynamic limiting. Chaos 12(1):1-7
  65. Corron, N. J., Pethel, S. D., Hopper, B. A. (2000) Controlling chaos with simple limiters. Phy. Rev. Lett., 84:3835-3838
  66. Wiggins, S. (1992) Chaotic Transport in Dynamical Systems. New York: Springer-Verlag
  67. Jaeger, L., Kantz, H. (1997) Homoclinic tangencies and non-normal Jacobians -effects of noise in non-hyperbolic systems. Physica D, 105:79-96