Targeting Control of Chaotic Systems
2003
Abstract
Targeting control of chaos is concerned with taking advantage of sen- sitive dependence to initial conditions to coax a dynamical system to following a desirable trajectory. In other words, it is taking advantage of the butterfly effect so that the rich spectrum of possible trajectories embedded within a chaotic attractor can be selected with extremely small energy input. We review historical and pop- ular approaches which fall under this general area in an attempt to reveal these techniques in a useful manner for applied scientists.
References (67)
- Lorenz, E. N. (1963) Deterministic nonperiodic flow. J. Atmos. Sci., 20:130-141
- Ott, E., Grebogi, C., Yorke, J. A. (1990) Controlling chaos. Phys. Rev. Lett., 64:1196-1199
- Romerias, F., Grebogi, C., Ott, E., Dayawansa, W. (1992) Contolling chaotic dynamical systems. Physica D, 58(1002):165-192
- Hirsch, M., Smale, S. (1974) Differential Equations, Dynamical Systems and Linear Algebra. New York: Academic Press
- Bollt, E., Kostelich, E., (1998) Optimal targeting of chaos. Phys. Lett. A, 245(5):399-406
- Shinbrot, T., Ott, E., Grebogi, C., Yorke, J. A. (1992) Using chaos to direct orbits to targets in systems describable by a one-dimensional map. Phys. Rev. A, 45:4165-4168
- Shinbrot, T., Grebogi, C., Ott, E., Yorke, J. A. (1993) Using small perturbations to control chaos. Nature, 363:411-417
- Bollt, E. (1997) Controlling the chaotic logistic map. PRIMUS (Problems Re- sources, and Issues in Mathematics Undergraduate Studies), VII(1):1-18
- Shinbrot, T., Ditto, W., Grebogi, C., Ott, E., Spano, M. L., Yorke, J. A. (1992) Using the sensitive dependence of chaos to direct orbits to targets in an experi- mental chaotic systems. Phys. Rev. Lett., 68:2863-2866
- Dolnik, M., Bollt, E. (1998) Communication with chemical chaos in the presence of noise. Chaos, 8(3):702-710, Bollt, E., Dolnik, M. (1997) Encoding information in chemical chaos by controlling symbolic dynamics. Phys. Rev. E, 55: 6404-6413
- Shinbrot, T., Ott, E., Grebogi, C., Yorke, J. A. (1990) Using chaos to direct trajectories to targets. Phys. Rev. Lett., 65:3215-3218
- Bollt, E. (1995) Controlling Chaos, Targeting, and Transport. Ph.D thesis, U. Colorado, Boulder
- Lai, Y. C., Ding, M., Grebogi, C. (1993) Controlling Hamiltonian chaos. Phys. Rev. E, 47:86-92
- Bollt, E., Meiss, J. D. (1995) Targeting chaotic orbits to the moon through recurrence. Phys. Lett. A, 204:373-378
- Bollt, E., Meiss, J. D. (1995) Controlling chaos through recurrence. Physica D, 81:280-294
- Kostelich, E. J., Grebogi, C., Ott, E., Yorke, J. A. (1993) Higher dimensional targeting. Phys. Rev. E, 47:305-310
- Barreto, E., Kostelich, E. J., Grebogi, C., Ott, E., Yorke, J. A. (1995) Effi- cient switching between controlled unstable periodic orbits in higher dimensional chaotic systems. Phys. Rev. E, 51:4169-4172
- Kostelich, E. J., Barreto, E. (1997) Targeting and control of chaos. In Con- trol and Chaos, ed. by Judd, K., Mees, A., Teo, K. L., Vincent, T. L. Boston: Birkhäuser, 158-169
- Kostelich, E., Yorke, J. A. (1987) Lorenz cross sections of the chaotic attractor of the double rotor. Physica D, 24:263-278
- Arrowsmith, D. K., Place, C. H. (1990) Introduction to Dynamical Systems. London: Cambridge Univ. Press
- Meiss, J. D. (1992) Symplectic maps, variational principles, and transport. Reviews of Modern Physics, 64:795-848
- Mather, J. N. (1991) Variational construction of orbits of twist diffeomorphisms. J. Am. Math. Soc., 4:207-263
- Hanson, J., Cary, J., Meiss, J. (1985) 'Algebraic decay in self-similiar Markov chains. J. Stat. Phys., 39(3/4):327-345
- Meiss, J. D., Ott, E. (1987) Markov tree model of transport in area preserving maps. Physica D, 20:387-402
- Devaney, R. L. (1989) An Introduction to Chaotic Dynamical Systems. 2nd ed. Redwood City, CA: Addison Wesley
- Martelli, M., Dong, M., Seph, T. (1998) Defining chaos. Mathematics Magazine, 71(2):112-122
- Schroer, C. G., Ott, E. (1997) argeting in Hamiltonian systems that have mixed regular/chaotic phase spaces. Chaos. Focus Issue: Control and Synchronization of Chaos, 7(4):512-519
- Szebehely, V. (1967) Theory of Orbits the Restricted Problem of Three Bodies. New York: Academic Press
- Bollt, E. (2001) Combinatorial control of global dynamics in a chaotic differ- ential equation. Int. J. Bifur. Chaos, 11(8):2145-2162
- Rudolph, D. J. (1990) Fundamentals of Measurable Dynamics, Ergodic Theory on Lebesgue Spaces. Oxford: Clarendon Press
- Bollt, E., Stanford, T., Lai, Y. -C., Zyczkowski, K. (2001) What symbolic dy- namics do we get with a misplaced partition? on the validity of threshold cross- ings analysis of chaotic time-series. Physica D, 154(3/4):259-286
- Bollt, E., Stanford, T., Lai, Y. -C., Zyczkowski, K. (2000) Validity of threshold- crossing analysis of symbolic dynamics from chaotic time series. Phys. Rev. Lett. 85(16):3524-3527
- Bollt, E. (2003) Review of chaos communication by feedback control of symbolic dynamics. Int. J. Bifur. Chaos, to appear
- Dolnik, M., Bollt, E. (1998) Communication with chemical chaos in the presence of noise. Chaos, 8(3):702-710
- Bollt, E., Lai, Y. -C., Grebogi, C. (1997) Analysis of the topological entropy versus noise resistance trade-off when communicating with chaos. Phys. Rev. Lett., 79(19):3787-3790
- Hayes, S., Grebogi, C., Ott, E., Mark, A. (1994) Experimental control of chaos for communication. Phys. Rev. Lett., 73:1781-1784
- Hayes, S., Grebogi, C., Ott, E. (1993) Communicating with chaos. Phys. Rev. Lett., 70:3031-3034
- Gould, R. (1988) Graph Theory. Menlo Park, CA: Benjamin/Cummings Pub- lishing
- Bondy, J. A., Murty, U. S. R. (1976), Graph Theory with Applications. New York: American Elsevier
- de Melo, W., van Strein, S. (1992) One-Dimensional Dynamics. New York: Springer-Verlag
- Milnor, J., Thurston, W. (1997) On Iterated Maps of the Interval: I and II. Princeton: Princeton Univ. Press
- Kitchens, B. P. (1998) Symbolic Dynamics, One-sided, Two-sided and Count- able State Markov Shifts. New York: Springer-Verlag
- Lind, D., Marcus, B. (1995) An Introduction to Symbolic Dynamics and Cod- ing. New York: Cambridge Univ. Press
- Cvitanovic, P. Gunaratne, G., Procaccia, I. (1988) Topological and metric prop- erties of Hénon-type attractors. Phys. Rev. A, 38:1503-1520
- Cvitanovic, P. (1991) Periodic orbits as the skeleton of classical and quantum chaos. Physica D, 51:138-151
- Cvitanovic, P. (1995) Dynamical averaging in terms of periodic orbits. Physica D, 83:109-123
- Grassberger, P., Kantz, H., Moenig, U. (1989) On the symbolic dynamics of the Henon map. J. Phys. A, 22:5217-5230
- Smale, S. (1967) Differentiable dynamical systems. Bull AMS, 73:747-817
- Bowen, R. (1970) Markov partitions for axiom A diffeomorphisms. Am. J. Math, 92:725-747
- Bowen, R. (1975) Equilibrium States and the Ergodic Theory of Anosov Dif- feomorphisms. Berlin: Springer-Verlag
- Bowen, R. (1975) Equilibrium States and the Ergodic Theory of Anosov Dif- feomorphisms. Berlin: Springer-Verlag
- Christiansen, F., Politi, A. (1996) Symbolic encoding in symplectic maps. Non- linearity, 9:1623-1640
- Christiansen F., Politi A. (1997) Guidlines for the construction of a generating partition in the standard map. Physica D, 109:32-41
- Hansen, K. (1992) Pruning of orbits in four-disk and hyperbola billiards. Chaos, 2:71-75
- Hansen, K. (1993) Symbolic dynamics. I. Finite dispersive billiards. Nonlinear- ity, 6:753-769
- Place, C. M., Arrowsmith ,D. K. (2000) Control of transient chaos in tent maps near crisis. I: Fixed points. Phys. Rev. E, 61(2):1357-1368; II: Periodic orbits. 1369-1381
- Neter, J., Kutner, M. H., Nachtsheim, C. J., Wasserman, W. (1996) Applied Linear Regression Models. 3rd ed. Chicago: IRWIN
- Press, W., Flannery, B., Teukolsky, S., Vetterling, W. (1988) Numerical Recipes in C: The Art of Scientific Computing. New York: Cambridge Univ. Press
- Pyragas, K. (1992) Continuous control of chaos by self-controlling feedback. Phys. Lett. A, 170:421-428
- Boccaletti, S., Arecchi, F. T. (1996) Adaptive recognition and control of chaos. Physica D, 96:9-16
- Arecchi, F. T., Bsti, G., Boccaletti, S., Perrone, A. L. (1994) Adaptive recog- nition of a chaotic dynamics. Europhys. Lett., 26:327-332
- Boccalletti, S., Grebogi, C., Lai, Y. -C., Mancini, H., Maza, D. (2000) The control of chaos: theory and applications. Phys. Rep., 329:103-197
- Boccalleti, S., Fairini, A., Kostelich, E. J., Arecchi, F. T. (1997) Adaptive targeting of chaos. Phys. Rev. E,. 55:R4845-R4848
- Corron, N., Pethel, S. (2002) Control of long periodic orbits and and arbitrary trajectories in chaotic systems using dynamic limiting. Chaos 12(1):1-7
- Corron, N. J., Pethel, S. D., Hopper, B. A. (2000) Controlling chaos with simple limiters. Phy. Rev. Lett., 84:3835-3838
- Wiggins, S. (1992) Chaotic Transport in Dynamical Systems. New York: Springer-Verlag
- Jaeger, L., Kantz, H. (1997) Homoclinic tangencies and non-normal Jacobians -effects of noise in non-hyperbolic systems. Physica D, 105:79-96