Academia.eduAcademia.edu

Outline

Coordinated UAV Manoeuvring Flight Formation

2009, Informatica (slovenia)

Abstract

A methodology is presented for real-time control of unmanned aerial vehicles (UAV) in the absence of apriori knowledge of location of sites in an inhospitable flight territory. Our proposed hostile control methodology generates a sequence of waypoints to be pursued on the way to the target. Waypoints are continually computed with new information about the nature of changing threat. The

References (26)

  1. Balch, T., & Arkin, R.C. (1998). Behavior-based formation control for multi-robot teams. IEEE Transactions on Robotics and Automation, 14(6), pp 926-939.
  2. Botelho, S., & Alami, R. (1999). A scheme for multi-robot cooperation through negotiated task allocation and achievement. In Proceedings of the International Conference on Robotics and Automation, pp 1234-1239.
  3. Cannan, J.W. (1999). Seeing more, and risking less, with UAVs. Aerospace America, 37(10).
  4. Chandler, P. R., Rasmussen, S. J. (2002). Military applications: Unmanned aerial vehicles: Multi UAV: a multiple UAV simulation for investigation of cooperative control. In Proceedings of the 34th Conference on Winter Simulation: Exploring New Frontiers.
  5. Chandler, P., Rasmussen, S., & Pachter, M. (2000). UAV cooperative path planning. In Proceedings of the AIAA Guidance Navigation, and Control Conference, Denver, CO.
  6. Cormen, T.H., Leiserson, C.E., Rivest, R.L., and Stein, C. (2001). Introduction to Algorithms, Second Edition. MIT Press and McGraw-Hill. ISBN 0-262-03293-7. Section 24.3: Dijkstra's algorithm, pp.595-601.
  7. Das, A.K., Fierro, R., Kumar, V., Ostrowski, J.P. (2002). A vision-based formation control framework. IEEE Trans. Robot. and Automat.,18(5), 813--825.
  8. Dudek, G., (2005). Computational Principles of Mobile Robotics, Cambridge University press.
  9. Hexmoor, H., & Pasupuleti, S. (2003). Institutional versus interpersonal influences on role adoption. International workshop on autonomous agents (AAMAS-03), Australia.
  10. Kirkpatrick, S., Gelatt Jr., C.D., & Vecchi, M.P. (1983). Optimization by simulated annealing. Science, 220(4598), pp. 670-680.
  11. Knuth, D.E. (1997). The art of computer programming: Fundamental algorithms, (Vol. 1, 3 rd ed.). Addison-Wesley.
  12. Krishna, M., Hexmoor, H., & Pasupuleti, S. (2003). Avoiding collision logjams through cooperation and conflict propagation. International Conference on Integration of Knowledge Intensive Multi Agent Systems (KIMAS-03), Boston, Massachusetts.
  13. Krishna, M., Hexmoor, H., & Pasupuleti, S. (2004). Role of autonomy in a distributed sensor network for surveillance. In proceedings of the International conference on artificial intelligence (ICAI), Las Vegas, Nevada.
  14. Lesser, V., Horling, B., Vincent, R., Miller, R., Shen, J., Becker, R., & Rawlins, K. (2001). Distributed Sensor Network for Real Time Tracking. In Proceedings of the 5 th International Conference on Autonomous Agents. pp 417-424. Montreal, Canada.
  15. McLain, T., Chandler, P., Ramussen, S., & Pachter, M. (2001). Cooperative control of UAV rendezvous. In Proceedings of the American Control Conference (ACC), pp. 2309-2314, Arlington, VA.
  16. McLain, T., Beard, R., & Kelsey, J. (2002). Experimental demonstration of multiple robot cooperative target intercept. In Proceedings of the AIAA Guidance and Control Conference and Exhibit, Monterey, CA.
  17. McLain, T., Beard, R., Goodrich, M., & Anderson, E. (2002). Coordinated target assignment and intercept for unmanned air vehicles. IEEE Transactions on Robotics and Automation.
  18. Mataric, M., Sukhatme, G., & Ostergaard, E. (2003). Multi-robot task allocation in uncertain environments. Autonomous Robots, 14(2-3), pp. 255-263.
  19. Nygard, K., Chandler, P.,& Pachter, M. (2001). Dynamic network optimization models for air vehicle resource allocation. In Proceedings of the American Control Conference (ACC), pp. 1853- 1856.
  20. Parker, L. (1993). Designing control laws for cooperative agent teams. In Proceedings of IEEE International Conference on Robotics and Automation (ICRA), pp 582-587, Atlanta, GA.
  21. Pierce, D., & Kuipers, B. (1991). Learning Hill- Climbing Functions as a Strategy for Generating Behaviours in a Mobile Robot. From Animals to Animats: Proceedings of the First International Conference on Simulation of Adaptive Behavior, pp 327-336, Cambridge, MA: The MIT Press/Bradford Books.
  22. Schulz, D., Burgard, W., Fox, D., & Cremers, A.B., (2001). Tracking Multiple Moving Targets with a Mobile Robot using Particle Filters and Statistical Data Association.. In Proceedings of IEEE International Conference on Robotics and Automation. Seoul Korea, pages 1665-1670.
  23. Schulz, D. & Burgard, W. (2001). Probabilistic State Estimation of Dynamic Objects with a Moving Mobile Robot. Robotics and Autonomous Systems,34(2-3).
  24. Silva, V.T., Carlos, J. P., & Lucena, D. (2003). Doctoral papers: MAS-ML: a multi-agent system modeling language. In Companion of the 18th Annual ACM SIGPLAN Conference on Object- Oriented Programming, Systems, Languages, and Applications, Anaheim, CA.
  25. Williams, W., Harris, M. (2002). The Challenges of Flight-Testing Unmanned Air Vehicles, in Systems Engineering, Test & Evaluation Conference, Sydney, Australia.
  26. Yuret, D., and Maza M. (1993). Dynamic Hill- Climbing: Overcoming the limitations of optimization techniques. The Second Turkish Symposium on Artificial Intelligence and Neural Networks, pp. 208-221.