Coordinated UAV Manoeuvring Flight Formation
2009, Informatica (slovenia)
Abstract
A methodology is presented for real-time control of unmanned aerial vehicles (UAV) in the absence of apriori knowledge of location of sites in an inhospitable flight territory. Our proposed hostile control methodology generates a sequence of waypoints to be pursued on the way to the target. Waypoints are continually computed with new information about the nature of changing threat. The
References (26)
- Balch, T., & Arkin, R.C. (1998). Behavior-based formation control for multi-robot teams. IEEE Transactions on Robotics and Automation, 14(6), pp 926-939.
- Botelho, S., & Alami, R. (1999). A scheme for multi-robot cooperation through negotiated task allocation and achievement. In Proceedings of the International Conference on Robotics and Automation, pp 1234-1239.
- Cannan, J.W. (1999). Seeing more, and risking less, with UAVs. Aerospace America, 37(10).
- Chandler, P. R., Rasmussen, S. J. (2002). Military applications: Unmanned aerial vehicles: Multi UAV: a multiple UAV simulation for investigation of cooperative control. In Proceedings of the 34th Conference on Winter Simulation: Exploring New Frontiers.
- Chandler, P., Rasmussen, S., & Pachter, M. (2000). UAV cooperative path planning. In Proceedings of the AIAA Guidance Navigation, and Control Conference, Denver, CO.
- Cormen, T.H., Leiserson, C.E., Rivest, R.L., and Stein, C. (2001). Introduction to Algorithms, Second Edition. MIT Press and McGraw-Hill. ISBN 0-262-03293-7. Section 24.3: Dijkstra's algorithm, pp.595-601.
- Das, A.K., Fierro, R., Kumar, V., Ostrowski, J.P. (2002). A vision-based formation control framework. IEEE Trans. Robot. and Automat.,18(5), 813--825.
- Dudek, G., (2005). Computational Principles of Mobile Robotics, Cambridge University press.
- Hexmoor, H., & Pasupuleti, S. (2003). Institutional versus interpersonal influences on role adoption. International workshop on autonomous agents (AAMAS-03), Australia.
- Kirkpatrick, S., Gelatt Jr., C.D., & Vecchi, M.P. (1983). Optimization by simulated annealing. Science, 220(4598), pp. 670-680.
- Knuth, D.E. (1997). The art of computer programming: Fundamental algorithms, (Vol. 1, 3 rd ed.). Addison-Wesley.
- Krishna, M., Hexmoor, H., & Pasupuleti, S. (2003). Avoiding collision logjams through cooperation and conflict propagation. International Conference on Integration of Knowledge Intensive Multi Agent Systems (KIMAS-03), Boston, Massachusetts.
- Krishna, M., Hexmoor, H., & Pasupuleti, S. (2004). Role of autonomy in a distributed sensor network for surveillance. In proceedings of the International conference on artificial intelligence (ICAI), Las Vegas, Nevada.
- Lesser, V., Horling, B., Vincent, R., Miller, R., Shen, J., Becker, R., & Rawlins, K. (2001). Distributed Sensor Network for Real Time Tracking. In Proceedings of the 5 th International Conference on Autonomous Agents. pp 417-424. Montreal, Canada.
- McLain, T., Chandler, P., Ramussen, S., & Pachter, M. (2001). Cooperative control of UAV rendezvous. In Proceedings of the American Control Conference (ACC), pp. 2309-2314, Arlington, VA.
- McLain, T., Beard, R., & Kelsey, J. (2002). Experimental demonstration of multiple robot cooperative target intercept. In Proceedings of the AIAA Guidance and Control Conference and Exhibit, Monterey, CA.
- McLain, T., Beard, R., Goodrich, M., & Anderson, E. (2002). Coordinated target assignment and intercept for unmanned air vehicles. IEEE Transactions on Robotics and Automation.
- Mataric, M., Sukhatme, G., & Ostergaard, E. (2003). Multi-robot task allocation in uncertain environments. Autonomous Robots, 14(2-3), pp. 255-263.
- Nygard, K., Chandler, P.,& Pachter, M. (2001). Dynamic network optimization models for air vehicle resource allocation. In Proceedings of the American Control Conference (ACC), pp. 1853- 1856.
- Parker, L. (1993). Designing control laws for cooperative agent teams. In Proceedings of IEEE International Conference on Robotics and Automation (ICRA), pp 582-587, Atlanta, GA.
- Pierce, D., & Kuipers, B. (1991). Learning Hill- Climbing Functions as a Strategy for Generating Behaviours in a Mobile Robot. From Animals to Animats: Proceedings of the First International Conference on Simulation of Adaptive Behavior, pp 327-336, Cambridge, MA: The MIT Press/Bradford Books.
- Schulz, D., Burgard, W., Fox, D., & Cremers, A.B., (2001). Tracking Multiple Moving Targets with a Mobile Robot using Particle Filters and Statistical Data Association.. In Proceedings of IEEE International Conference on Robotics and Automation. Seoul Korea, pages 1665-1670.
- Schulz, D. & Burgard, W. (2001). Probabilistic State Estimation of Dynamic Objects with a Moving Mobile Robot. Robotics and Autonomous Systems,34(2-3).
- Silva, V.T., Carlos, J. P., & Lucena, D. (2003). Doctoral papers: MAS-ML: a multi-agent system modeling language. In Companion of the 18th Annual ACM SIGPLAN Conference on Object- Oriented Programming, Systems, Languages, and Applications, Anaheim, CA.
- Williams, W., Harris, M. (2002). The Challenges of Flight-Testing Unmanned Air Vehicles, in Systems Engineering, Test & Evaluation Conference, Sydney, Australia.
- Yuret, D., and Maza M. (1993). Dynamic Hill- Climbing: Overcoming the limitations of optimization techniques. The Second Turkish Symposium on Artificial Intelligence and Neural Networks, pp. 208-221.