Nonperturbative Effects on Seven-Brane Yukawa Couplings
2010, Physical Review Letters
https://doi.org/10.1103/PHYSREVLETT.104.231601Abstract
We analyze non-perturbative corrections to the superpotential of seven-brane gauge theories on type IIB and F-theory warped Calabi-Yau compactifications. We show in particular that such corrections modify the holomorphic Yukawa couplings by an exponentially suppressed contribution, generically solving the Yukawa rank-one problem of certain F-theory local models. We provide explicit expressions for the non-perturbative correction to the seven-brane superpotential, and check that it is related to a non-commutative deformation to the tree-level superpotential via a Seiberg-Witten map.
References (31)
- R. Donagi and M. Wijnholt, arXiv:0802.2969 [hep-th].
- C. Beasley, J. J. Heckman and C. Vafa, JHEP 0901, 058 (2009) ; JHEP 0901, 059 (2009).
- J. J. Heckman and C. Vafa, arXiv:0811.2417 [hep-th].
- A. Font and L. E. Ibáñez, JHEP 0909, 036 (2009).
- S. Cecotti, M. C. N. Cheng, J. J. Heckman and C. Vafa, arXiv:0910.0477 [hep-th].
- J. P. Conlon and E. Palti, arXiv:0910.2413 [hep-th].
- H. Hayashi, T. Kawano, Y. Tsuchiya and T. Watari, arXiv:0910.2762. C. Cordova, arXiv:0910.2955.
- For a review see R. Blumenhagen, M. Cvetič, S. Kachru and T. Weigand, arXiv:0902.3251 [hep-th]
- S. A. Abel and M. D. Goodsell, JHEP 0710, 034 (2007).
- D. Cremades, L. E. Ibáñez and F. Marchesano, arXiv:hep-ph/0212048; JHEP 0307, 038 (2003).
- M. Graña and J. Polchinski, Phys. Rev. D 63, 026001 (2000).
- S. B. Giddings, S. Kachru and J. Polchinski, Phys. Rev. D 66, 106006 (2002).
- O. J. Ganor, Nucl. Phys. B 499, 55 (1997).
- M. Berg, M. Haack and B. Körs, Phys. Rev. D 71, 026005 (2005).
- D. Baumann et al. JHEP 0611, 031 (2006).
- S. Gukov, C. Vafa and E. Witten, Nucl. Phys. B 584, 69 (2000) [Erratum-ibid. B 608, 477 (2001)].
- K. Dasgupta, G. Rajesh and S. Sethi, JHEP 9908, 023 (1999).
- E. Witten, Nucl. Phys. B 474, 343 (1996).
- L. Martucci, JHEP 0606, 033 (2006).
- P. Koerber and L. Martucci, JHEP 0708, 059 (2007).
- M. Gualtieri, arXiv:math/0401221.
- A.Kapustin, Int. J. Geom. Meth. Mod. Phys. 1, 49 (2004)
- V. Pestun, Adv. Theor. Math. Phys. 11 (2007) 399.
- N. Seiberg and E. Witten, JHEP 9909, 032 (1999).
- K. Becker and M. Becker, Nucl. Phys. B 477, 155 (1996).
- The rank-one scenario assumes that down-and up-type Yukawas arise each from a single point of triple intersec- tion of matter curves. Difficulties in building such setting for the latter have been recently pointed out in [6].
- Taking global properties of the holomorphic normal bun- dle into account, W tree D7 may also contain quadratic terms on φ whenever F = 0. These terms, not visible in our lo- cal analysis, can be easily incorporated into eq.(8).
- This description of β-deformations should be understood as a deformation of the type IIB supergravity background in which IASD 3-form fluxes are turned on, as in [10].
- Note that this description breaks down at Σ np 4 , since
- ∂ ∂ ln |χ0| 2 is a δ-function two-form with support on Σ np 4 .
- This derivation not only applies to the non-perturbative superpotential (8), but to any superpotential of the form (11) arising from general β-deformed complex spaces.