A study on the curling number of graph classes
2015, arXiv: General Mathematics
Abstract
Given a finite nonempty sequence $S$ of integers, write it as $XY^k$, consisting of a prefix $X$ (which may possibly be empty), followed by $k$ copies of a non-empty string $Y$. Then, the greatest such integer $k$ is called the curling number of $S$ and is denoted by $cn(S)$. The concept of curling number of sequences has already been extended to the degree sequences of graphs to define the curling number of a graph. In this paper we study the curling number of graph powers, graph products and certain other graph operations.
References (14)
- B. Chaffin, J. P. Linderman, N. J. A. Sloane,and A. R. Wilks, On Curling Numbers of Integer Sequences, arXiv:1212.6102 [math.CO], 2013.
- J. A. Bondy and U. S. R. Murty, Graph Theory, Springer, 2008.
- A. Brandstadt, V. B. Le and J. P. Spinard, Graph Classes : A Survey, SIAM, Philadelphia, 1999.
- G. Chartrand and P. Zhang, Introduction to Graph Theory, McGraw-Hill Inc., 2005.
- J. Clark and D. A. Holton, A First Look At Graph Theory, Allied Pub., India, 1991.
- R. Diestel, Graph Theory, Springer-Verlag, New York, 1997.
- J. A. Gallian, A Dynamic survey of Graph Labeling, the electronic journal of combinatorics (DS-6), 2014.
- F. Harary, Graph Theory, Addison-Wesley Publishing Company Inc, 1994.
- J. Kok, N. Sudev , S. Chithra , On Curling Number of Certain Graphs, preprint,2015. arxiv Id :1506.00813[math.CO].
- C. Susanth, S. J. Kalayathankal, N. K. Sudev, K. P. Chithra, J. Kok, Curling Numbers of Certain Graph Powers, preprint.
- N. K. Sudev, C. Susanth, K. P. Chithra, J. Kok, S. J. Kalayathankal, Some New Results on the Curling Number of Graphs , preprint.
- D. B. West, Introduction to Graph Theory, Pearson Education Asia, (2002).
- R. J. Wilson, Introduction to Graph Theory, Prentice Hall, 1998.
- Information System on Graph Classes and their Inclusions, http://www.graphclasses.org/smallgraphs.