Academia.eduAcademia.edu

Outline

A study on the curling number of graph classes

2015, arXiv: General Mathematics

Abstract

Given a finite nonempty sequence $S$ of integers, write it as $XY^k$, consisting of a prefix $X$ (which may possibly be empty), followed by $k$ copies of a non-empty string $Y$. Then, the greatest such integer $k$ is called the curling number of $S$ and is denoted by $cn(S)$. The concept of curling number of sequences has already been extended to the degree sequences of graphs to define the curling number of a graph. In this paper we study the curling number of graph powers, graph products and certain other graph operations.

References (14)

  1. B. Chaffin, J. P. Linderman, N. J. A. Sloane,and A. R. Wilks, On Curling Numbers of Integer Sequences, arXiv:1212.6102 [math.CO], 2013.
  2. J. A. Bondy and U. S. R. Murty, Graph Theory, Springer, 2008.
  3. A. Brandstadt, V. B. Le and J. P. Spinard, Graph Classes : A Survey, SIAM, Philadelphia, 1999.
  4. G. Chartrand and P. Zhang, Introduction to Graph Theory, McGraw-Hill Inc., 2005.
  5. J. Clark and D. A. Holton, A First Look At Graph Theory, Allied Pub., India, 1991.
  6. R. Diestel, Graph Theory, Springer-Verlag, New York, 1997.
  7. J. A. Gallian, A Dynamic survey of Graph Labeling, the electronic journal of combinatorics (DS-6), 2014.
  8. F. Harary, Graph Theory, Addison-Wesley Publishing Company Inc, 1994.
  9. J. Kok, N. Sudev , S. Chithra , On Curling Number of Certain Graphs, preprint,2015. arxiv Id :1506.00813[math.CO].
  10. C. Susanth, S. J. Kalayathankal, N. K. Sudev, K. P. Chithra, J. Kok, Curling Numbers of Certain Graph Powers, preprint.
  11. N. K. Sudev, C. Susanth, K. P. Chithra, J. Kok, S. J. Kalayathankal, Some New Results on the Curling Number of Graphs , preprint.
  12. D. B. West, Introduction to Graph Theory, Pearson Education Asia, (2002).
  13. R. J. Wilson, Introduction to Graph Theory, Prentice Hall, 1998.
  14. Information System on Graph Classes and their Inclusions, http://www.graphclasses.org/smallgraphs.