Academia.eduAcademia.edu

Outline

DNA cleavage activity of VIVO(acac)2 and derivatives

2009, Journal of Inorganic Biochemistry

https://doi.org/10.1016/J.JINORGBIO.2009.01.003

Abstract

The DNA cleavage activity of several β-diketonate vanadyl complexes is examined. Vanadyl acetylacetonate, V IV O(acac) 2 , 1, shows a remarkable activity in degrading plasmid DNA in the absence of any activating agents, air and photoirradiation. The cleaving activity of several related complexes V IV O(hd) 2 (2, Hhd=3,5-heptanedione), V IV O(acac-NH 2 ) 2 (3, Hacac-NH 2 =acetoacetamide) and V IV O(acac-NMe 2 ) 2 (4, Hacac-NMe 2 =N,N-dimethylacetoacetamide) is also evaluated. It is shown that 2 exhibits an activity similar to 1, while 3 and 4 are much less efficient cleaving agents. The different activity of the complexes is related to their stability towards hydrolysis in aqueous solution, which follows the order 1~2 >> 3~4. The nature of the pH buffer was also found to be determinant in the nuclease activity of 1 and 2. In a phospate buffered medium DNA cleavage by these agents is much more efficient than in tris, hepes, mes or mops buffers. The reaction seems to take place through a mixed mechanism, involving the formation of reactive oxygen species (ROS), namely OH radicals, and possibly also direct cleavage at phosphodiester linkages induced by the vanadium complexes.

References (60)

  1. M.J. Clarke, F. Zhu, D.R. Frasca, Chem. Rev. 99 (1999) 2511-2533.
  2. Q. Jiang, N. Xiao, P. Shi, Y. Zhu, Z. Guo, Coord. Chem. Rev. 251 (2007) 1951- 1972.
  3. E.L. Hegg, J.N. Burstyn, Coord. Chem. Rev. 173 (1998) 133-165.
  4. H. Sakurai, A. Katoh, Y. Yoshikawa, Bull. Chem. Soc. Jpn. 79 (2006) 1645-1664.
  5. K.H. Thompson, C. Orvig, Dalton Trans. (2006) 761-764. ACCEPTED MANUSCRIPT 25/28
  6. K.H. Thompson, oral communication, 6 th International Vanadium Symposium, Lisbon, 2008.
  7. S.S. Amin, K. Cryer, B. Zhang, S.K. Dutta, S.S. Eaton, O.P. Anderson, S.M. Miller, B.A. Reul, S.M. Brichard, D.C. Crans, Inorg. Chem. 39 (2000) 406-416.
  8. H. Ou, L. Yan, D. Mustafi, M.W. Makinen, M.J. Brady, J. Biol. Inorg. Chem. 10 (2005) 874-886.
  9. D.C. Crans, J. Inorg. Biochem. 80 (2000) 123-131.
  10. Y. Fu, Q. Wang, X.-G. Yang, X-D. Yang, K. Wang, J. Biol. Inorg. Chem. 13 (2008) 1001-1009.
  11. C.J. Burrows, J.G. Muller, Chem. Rev. 98 (1998) 1109-1151.
  12. B. Armitage, Chem. Rev. 98 (1998) 1171-1200.
  13. X. Shi, H. Jiang, Y. Mao, J. Ye, U. Saffiotti, Toxicology 106 (1996) 27-38.
  14. S.J. Heater, M.W. Carrano, D. Rains, R.B. Walter, D. Ji, Q Yan, R.S. Czernuszewicz, C.J. Carrano, Inorg. Chem. 39 (2000) 3881-3889.
  15. G. Verquin, G. Fontaine, M. Bria, E. Zhilinskaya, E. Abi-Aad, A. Aboukais, B. Baldeyrou, C. Bailly, J.-L. Bernier, J. Biol. Inorg. Chem. 9 (2004) 345-353.
  16. M. Sam, J.H. Hwang, G. Chanfreau, M.M. Abu-Omar, Inorg. Chem. 43 (2004) 8447-8455.
  17. C-T. Chen, J-S. Lin, J-H. Kuo, S-S. Weng, T-S. Cuo, Y-W. Lin, C-C. Cheng, Y-C Huang, J-K. Yu, P-T. Chou, Org. Lett. 6 (2004) 4471-4474.
  18. D.W.J. Kwong, O.Y. Chan, L.K. Shek, R.N.S. Wong, J. Inorg. Biochem. 99 (2005) 2062-2073.
  19. P. K. Sasmal, A. K. Patra, A. R. Chakravarty, J. Inorg. Biochem. 102 (2008) 1463- 1472.
  20. J. Costa Pessoa, I. Cavaco, I. Correia, I. Tomaz, P. Adão, I. Vale, V. Ribeiro, M.M.C.A. Castro, C.C.F.G. Geraldes, in: K. Kustin, J. Costa Pessoa, D.C. Crans (Eds), Vanadium: The Versatile Metal, ACS Symposium Series 974, ACS, 2007, pp. 340-351. ACCEPTED MANUSCRIPT 26/28
  21. A. Guyard, Bull. Soc. Chim. 25 (1876) 350.
  22. M.R. Maurya, Coord. Chem. Rev. 237 (2003) 163-181.
  23. A.G.J. Ligtenbarg, R. Hage, B.L. Feringa, Coord. Chem. Rev. 237 (2003) 89-101.
  24. T. Itoh, K. Jitsukawa, K. Kaneda, S. Terashini, J. Am. Chem. Soc. 101 (1979) 159- 169.
  25. L.J. Csanyi, K. Jaky, G. Galbacs, J. Molec. Cat. 179 (2002) 65-72.
  26. S.Q. Zhang, X.Y. Zhong, W.L. Lu, L. Zheng, X. Zhang, F. Sun, G.Y. Fu, Q. Zhang, J. Inorg. Biochem. 99 (2005) 1064-1075.
  27. X. Yang, K. Wang, J. Lu, D.C. Crans, Coord. Chem. Rev. 237 (2003) 103-111.
  28. D. Mustafi, M.W. Makinen, Inorg. Chem. 44 (2005) 5580-5590.
  29. P.C. Santos Claro, A.C. González-Baró, B.S. Parajón-Costa, E.J. Baran, Z. Anorg. Allg. Chem. 631 (2005) 1903-1908
  30. E. Garriba, G. Micera, D. Sanna, Inorg. Chim. Acta 359 (2006) 4470-4476.
  31. M. Mahroof-Tahir, D. Brezina, N. Fatima, M. Iqbal Choudhary, Atta-ur-Rahman, J. Inorg. Biochem. 99 (2005) 589.
  32. D.C. Crans, A.R. Khan, M. Mahroof-Tahir, S. Mondal, S.M. Miller, A. la Cour, O.P. Anderson, T. Jakusch, T. Kiss, J. Chem. Soc. Dalton. Trans. (2001) 3337-3345.
  33. P. Csermely, A. Martonosi, G. C. Levy, A. J. Ejchart, Biochem. J. 230 (1985) 807- 815.
  34. S.S. Soares, H. Martins, R.O. Duarte, J.J.G. Moura, J. Coucelo, C. Gutiérrez- Merino, M. Aureliano, J. Inorg. Biochem. 101 (2007) 80-88.
  35. M.B. Fisher, S.J. Thompson, V. Ribeiro, M.C. Lechner, A. Rettie, Arch. Biochem. Biophys. 356 (1998) 63-70.
  36. S. Mueller, H.-D. Riedel, W. Stremmel, Anal. Biochem. 245 (1997) 55-60.
  37. J. Bernadou, G. Pratviel, F. Bennis, M. Girardet, B. Meunier, Biochem. 28 (1989) 7268-7275.
  38. A. Sreedhara, J.D. Freed, J.A. Cowan, J. Am. Chem. Soc. 122 (2000) 8814-8824. ACCEPTED MANUSCRIPT 27/28
  39. R.P. Hertzberg, P.B. Dervan, J. Am. Chem. Soc. 104 (1982) 313-315.
  40. F. Mancin, P. Scrimin, P. Tecilla, U. Tonellato, Chem. Commun. (2005) 2540-254.
  41. B. Halliwell, J.M.C. Gutteridge, Free Radicals in Biology and Medicine, Oxford University Press, 2007.
  42. K.J. Humphreys, A.E. Johnson, K.D. Karlin, S.E. Rokita, J. Biol. Inorg. Chem. 7 (2002) 835-842.
  43. A. Sreedhara, J.D. Freed, J.A. Cowan, J. Am. Chem. Soc. 122 (2000) 8814-8824.
  44. J.M. Gutteridge, Biochem. J. 243 (1987) 709-714.
  45. N.C. Stellwagen, A. Bossi, C. Gelfi, P.G. Righetti, An. Biochem. 287 (2000) 167- 175.
  46. K.S. Haveles, A.G. Georgakilas, E.G. Sideris, V. Sophianopoulou, Int. J. Radiat. Biol. 76 (2000) 51-59.
  47. J.B. Goddard, A.M. Gonas, Inorg. Chem. 12 (1973) 574 -579.
  48. M. Aureliano, V.M.C. Madeira, in: J.O. Nriagu, Vanadium in the Environment, Part 1, John Wiley and Sons, Inc, New York, 1998, 333-357.
  49. S. Ramakrishnan, M. Palaniandavar, J. Chem. Sci. 117 (2005) 179-186.
  50. V. Rajendiran, R. Karthik, M. Palaniandavar, H. Stoeckli-Evans, V.S. Periasamy, M.A. Akbarsha, B.S. Srinag, H. Krishnamurthy, Inorg. Chem. 46 (2007) 8208-8221.
  51. W. Szczepanik, P. Kaczmarek, M. Jezowska-Bojczuk, J. Inorg. Biochem. 98 (2004) 2141-2148.
  52. E. Alberico, G. Micera, Inorg. Chim. Acta 215 (1994) 225-227.
  53. P. Buglyo, T. Kiss, E. Alberico, G. Micera, D. Dewaele, J. Coord. Chem. 36 (1995) 105-116.
  54. T. Kiss, E. Kiss, E. Garribba, H. Sakurai, J. Inorg. Biochem. 80 (2000) 65-73.
  55. S.A. Dikanov, B.D. Liboiron, K.H. Thompson, E. Vera, V.G. Yuen, J.H. McNeill, C. Orvig, J. Am. Chem. Soc. 121 (1999) 11004-11005.
  56. S.A. Dikanov, B.D. Liboiron, C. Orvig, J. Am. Chem. Soc. 124 (2002) 2969-2978. ACCEPTED MANUSCRIPT 28/28
  57. D. Mustafi, J. Telser, M.W. Makinen, J. Am. Chem. Soc. 114 (1992) 6219-6226.
  58. F.S. Jiang, M.W. Makinen, Inorg. Chem. 34 (1995) 1736-1744.
  59. P.A.M. Williams, S.B. Etcheverry, E.J. Baran, J. Inorg. Biochem. 65 (1997) 133- 136.
  60. A.A. Ouameur, H. Arakawa, H.A. Tajmir-Riahi, Biochem. Cell. Biol. 84 (2006) 677- 683.