Academia.eduAcademia.edu

Outline

Light Side Emitting Textile Structures

2016

Abstract

In self-reinforced polymeric materials (SRPMs), the same polymer forms both the reinforcing and matrix phases. SRPMs are also referred to as single-phase or homocomposites. Moreover, in the open literature, such polymer composites in which the reinforcement and matrix polymers are different but belong to the same family of polymers are also termed as SRPMs. The basic concept of selfreinforcement is the creation of a one-, twoor three-dimensional alignment (1D, 2D or 3D, respectively) within the matrix to fulfill the role of matrix reinforcement. Reinforcing action requires that the generated structure possesses a higher stiffness and strength than the matrix and, in addition, is well “bonded” to the matrix polymer. As a consequence, the stress can be transferred from the “weak” matrix to the “strong” reinforcing structure, according to the “working principle” of all composites. [1] Current trends toward environmentally friendly composite systems focus on the use of natural fibers as...

References (28)

  1. Zubia J, Arrue J.: Opt Fiber Technol.7, 101-140, (2001)
  2. Zarian J.R. et. al.: Side lighting optical conduit. US Patent 5987199, (1999)
  3. Harlin A., Makinen M., Vuorivirta A. : AUTEX Res. J., 3, 1-8, (2003)
  4. Endruweit A., Long A. C., Johnson M.S.: 8th International Conference on Textile Composites (TEXCOMP-8), Nottingham, UK, 16-18 Oct 2006.
  5. CaiI, Bo, Xiao-li, J., Zhang, Ch.: Journal of Wuhan University of Technology - Mater. Sci. Ed., Vol.18, No.4, Dec 2003.
  6. Křemenáková, D., Lédl, V., Militký, J., Bůbelová, B., Meryová, B.: Utility model č.24997 Active emitting safety means. Industrial property office, entered 4 th March 2013. References
  7. K. B. Cheng, Effects of yarn constitutions and fabrics specifications on electrical properties of hybrid woven fabrics, Composites: Part A 34, 2003
  8. Kmetty Akos, Josef Karger Kocsis, et al, Self reinforced polymeric materials: A review, Progress in polymer science 35 (2010), pp. 1288-1310
  9. Matabola, K.P , De Vries, A.R, et al, Single polymer composites:review, J Mater sci (2009) 44 pp. 6213-6222
  10. Karger Kocsis, J, Barany,T, Single polymer composites(SPCs): status and future trend, composites science and technology 92(2014) , pp 77-94
  11. Karger-Kocsis J, Fakirov S. Polymorphism-and stereoregularity-based single polymer composites. In: Bhatracharyya D, Fakirov S, editors. Synthetic polymer- polymer composites. Munich: Carl Hanser Verlag; 2012. p. 673-98.
  12. Alcock B, Cabrera NO, Barkoula NM, Loos J, Peijs T (2006) Composites Part A 37:716
  13. Cabrera N, Alcock B, Loos J, Peijs T (2004) Proc Instn Mech Eng 218:145
  14. Alcock B, Cabrera NO, Barkoula NM, Reynolds CT, Govaert LE, Peijs T (2007) Compos Sci Technol 67:2061. References
  15. Viková M., Vik M.: Colorimetric Properties of Photochromic Textiles. Appl Mech Mater. 2013;440:260-265.
  16. Bahajaj a. a., Asiri a. M, Alsoliemy a. M, Al-Sehemi a. G. Photochromic properties of 7',8'-dichloro-1,3,3-trimethylspiro[indoline-2,3'- [3H]benzo[b][1,4]oxazine] doped in PMMA and epoxy resin thin films. Pigment Resin Technol. 2009;38(6):353-358. doi:10.1108/03699420911000592.
  17. Pardo R, Zayat M, Levy D. Photochromic organic-inorganic hybrid materials. Chem Soc Rev. 2011;40(2):672. doi:10.1039/c0cs00065e.
  18. Vikova M, Vik M. The determination of absorbance and scattering coefficients for photochromic composition with the application of the black and white background method. Text Res J. 2015;85(18):1961-1971. doi:10.1177/0040517515578332.
  19. Vikova M, Vik M. Description of photochromic textile properties in selected color spaces. Text Res J. 2015;85(6):609-620. doi:10.1177/0040517514549988.
  20. Pardo R, Zayat M, Levy D. Photochromic organic-inorganic hybrid materials. Chem Soc Rev. 2011;40(2):672-687. doi:10.1039/c0cs00065e.
  21. Vikova M., Vik, M.: Alternative UV Sensors Based on Color-Changeable Pigments. Adv Chem Eng Sci. 2011;01(04):224-230. doi:10.4236/aces.2011.14032.
  22. Bouas-Laurent H, Dürr H. Organic photochromism (IUPAC Technical Report). Pure Appl Chem. 2001;73(4):639-665. doi:10.1351/pac200173040639.
  23. Żmija J. New organic photochromic materials and selected applications. 2010;41:48-56.
  24. Shibaev V, Bobrovsky A, Boiko N. Photoactive liquid crystalline polymer systems with light-controllable structure and optical properties. Prog Polym Sci. 2003;28(5):729-836. doi:10.1016/S0079-6700(02)00086-2.
  25. Chowdhury M a, Joshi M, Butola BS. Photochromic and Thermochromic Colorants in Textile Applications. J Eng Fiber Fabr. 2014;9(1):107-123.
  26. Poirier G, Nalin M, Cescato L, Messaddeq Y, Ribeiro SJL. Bulk photochromism in a tungstate-phosphate glass: A new optical memory material? J Chem Phys. 2006;125(16):1-3. doi:10.1063/1.2364476.
  27. Hadjoudis E. Photochromic and thermochromic anils. Mol Eng. 1995;5(4):301-337. doi:10.1007/BF01004014.
  28. Viková M., Christie, R.M, Vik,M: Unique deveice for measurement of photochromic textiles. Res J Text Appar. 2014;18(1):6-14.