The beta generalized linear exponential distribution
2016, Statistics
https://doi.org/10.1080/02331888.2016.1230617Abstract
In this paper, a new five-parameter lifetime distribution called beta generalized linear exponential distribution (BGLED) is introduced. It includes at least 17 popular sub-models as special cases such as the beta linear exponential, the beta generalized exponential, and the exponentiated generalized linear distributions. Mathematical and statistical properties of the proposed distribution are discussed in details. In particular, explicit expression for the density function, moments, asymptotics distributions for sample extreme statistics, and other statistical measures are obtained. The estimation of the parameters by the method of maximum-likelihood is discussed and the finite sample properties of the maximum-likelihood estimators (MLEs) are investigated numerically. A real data set is used to demonstrate its superior performance fit over several existing popular lifetime models.
References (31)
- Lai CD, Xie M, Murthy DNP. Bathtub shaped failure rate distributions. Handbook in reliability. 2001;20:69-104.
- Sarhan AM, Kundu D. Generalized linear failure rate distribution. Commun Stat -Theory Methods. 2009;38:642-660.
- Mahmouda MAW, Alamb FMA. The generalized linear exponential distribution. Stat Probab Lett. 2010;80:1005- 1014.
- Jafari AA, Mahmoudi E. Beta-linear failure rate distribution and its applications. 2012, arXiv:1212.5615.
- Sarhan AM, Ahmad AE, Alasbahi IA. Exponentiated generalized linear exponential distribution. Appl Math Model. 2013;37:2838-2849.
- Eugene N, Lee C, Famoye F. Beta-normal distributions and its application. Commun Stat -Theory Methods. 2002;31:23-35.
- Nadarajah S, Kotz S. The beta Gumbel distribution. Math Probl Eng. 2004;10:323-332.
- Nadarajah S, Gupta AK. The beta Fréchet distribution. Far East J Theoret Stat. 2004;14:15-24.
- Nadarajah S, Kotz S. The beta exponential distribution. Reliab Eng Syst Saf. 2006;91:689-697.
- Famoye F, Lee C, Olumolade O. Beta -Weibull distribution. J Statist Theory Appl. 2005;4:121-136.
- Akinsete A, Famoye F, Lee C. The beta-Pareto distribution. Statistics. 2008;42:547-563.
- Akinsete A, Lowe C. Beta-Rayleigh distribution in reliability measure. Section on physical and engineering sciences. Proceedings of the American Statistical Association, 2009. p. 3103-3107.
- Barreto-Souza W, Santos AHS, Cordeiro GM. The beta generalized exponential distribution. J Statist Comput Simul. 2010;80:159-172.
- Silva GO, Ortega EMM, Cordeiro GM. The beta modified Weibull distribution. Lifetime Data Anal. 2010;16:409-430.
- Pescim RR, Demetrio CGB, Cordeiro GM.. et al. The beta generalized half-normal distribution. Comput Stat Data Anal. 2010;54:945-957.
- Mahmoudi E. The beta generalized Pareto distribution with application to lifetime data. Math Comput Simul. 2011;81:2414-2430.
- Cordeiro GM, Lemonte AJ. The β-Birnbaum Saunders distribution: an improved distribution for fatigue life modeling. Comput Stat Data Anal. 2011;55:1445-1461.
- Cordeiro GM, Lemonte AJ. The beta Laplace distribution. Stat Probab Lett. 2011;81:973-982.
- Cordeiro GM, Lemonte AJ. The beta-half-Cauchy distribution. J Probab Stat. 2011;26:1-18.
- Paranaíba PF, Ortega EMM, Cordeiro GM. et al. The beta Burr XII distribution with application to lifetime data. Comput Stat Data Anal. 2011;55:1118-1136.
- Singla N, Jain K, Sharma SK. The beta generalized Weibull distribution: Properties and applications. Reliab Eng Syst Saf. 2012;102:5-15.
- Cordeiro GM, Castellares F, Montenegro LC. et al. The beta generalized gamma distribution. Statistics. 2013;47:888-900.
- Cintra RJ, Rego LC, Cordeiroa GM. et al. Beta generalized normal distribution with an application for SAR image processing. Statistics. 2014;48:279-294.
- Gupta DR, Kundu D. A new class of weighted exponential distributions. Statistics. 2009;43(6):621-634.
- Shakhatreh MK. A two-parameter of weighted exponential distributions. Stat Probab Lett. 2012;82(2):252-261.
- Arnold BC, Balakrishnan N, Nagaraja HN. First course in order statistics. New York: Wiley; 1992.
- Leadbetter MR, Lindgren G, Rootzen H. Extremes and related properties of random sequences and processes. New York: Springer; 1983.
- Cox DR, Hinkely DV. Theoretical statistics. London: Chapman & Hall; 1979.
- Aarset MV. How to identify bathtub hazard rate. IEEE Trans Reliab. 1987;36:106-108.
- Mudholkar GS, Srivastava DK, Kollia GD. A generalization of the Weibull distribution with application to the analysis of survival data. J Amer Statist Assoc. 1996;91:1575-1583.
- Glaser RE. Bathtub and related failure rate characterization. J Amer Statist Assoc. 1980;75:667-672.