Academia.eduAcademia.edu

Outline

A New Coupling Solution for G3-PLC Employment in MV Smart Grids

2019, Energies

https://doi.org/10.3390/EN12132474

Abstract

This paper proposes a new coupling solution for transmitting narrowband multicarrier power line communication (PLC) signals over medium voltage (MV) power lines. The proposed system is based on an innovative PLC coupling principle, patented by the authors, which exploits the capacitive divider embedded in voltage detecting systems (VDS) already installed inside the MV switchboard. Thus, no dedicated couplers have to be installed and no switchboard modifications or energy interruptions are needed. This allows a significant cost reduction of MV PLC implementation. A first prototype of the proposed coupling system was presented in previous papers: it had a 15 kHz bandwidth useful to couple single carrier PSK modulated PLC signals with a center frequency from 50–200 kHz. In this paper, a new prototype is developed with a larger bandwidth, up to 164 kHz, thus allowing to couple multicarrier G3-PLC signals using orthogonal frequency division multiplexing (OFDM) digital modulation. This mo...

References (51)

  1. Mishra, M.; van Riet, M. A Channel Model for Power Line Communication Using 4PSK Technology for Diagnosis: Some Lessons Learned. Int. J. Electr. Power Energy Syst. 2018, 95, 617-634. [CrossRef]
  2. Kabalci, E.; Kabalci, Y. Smart Grids and Their Communication Systems, 1st ed.; Springer Singapore Pte Ltd.: Singapore, 2019.
  3. Rinaldi, S.; Pasetti, M.; Sisinni, E.; Bonafini, F.; Ferrari, P.; Rizzi, M.; Flammini, A. On the Mobile Communication Requirements for the Demand-Side Management of Electric Vehicles. Energies 2018, 11, 1220. [CrossRef]
  4. Carcangiu, S.; Fanni, A.; Montisci, A. Optimization of a Power Line Communication System to Manage Electric Vehicle Charging Stations in a Smart Grid. Energies 2019, 12, 1767. [CrossRef]
  5. Sanseverino, E.R.; Di Silvestre, M.L.; Zizzo, G.; Gallea, R.; Quang, N.N. A Self-Adapting Approach for Forecast-Less Scheduling of Electrical Energy Storage Systems in a Liberalized Energy Market. Energies 2013, 6, 5738-5759. [CrossRef]
  6. Christoforidis, C.G.; Panapakidis, P.I.; Papadopoulos, A.T.; Papagiannis, G.; Koumparou, I.; Hadjipanayi, M.; Georghiou, E.G. A Model for the Assessment of Different Net-Metering Policies. Energies 2016, 9, 262.
  7. Cataliotti, A.; Cosentino, V.; Di Cara, D.; Tinè, G. LV Measurement Device Placement for Load Flow Analysis in MV Smart Grids. IEEE Trans. Instrum. Meas. 2016, 65, 999-1006. [CrossRef]
  8. Del Prete, S.; Delle Femine, A.; Gallo, D.; Landi, C.; Luiso, M. Implementation of a distributed Stand Alone Merging Unit. J. Phys. Conf. Ser. 2018, 1065, 052042. [CrossRef]
  9. Franek, L.; Fiedler, P. A Multiconductor Model of Power Line Communication in Medium-Voltage Lines. Energies 2017, 10, 816. [CrossRef]
  10. Uribe-Pérez, N.; Angulo, I.; De la Vega, D.; Arzuaga, T.; Fernández, I.; Arrinda, A. Smart Grid Applications for a Practical Implementation of IP over Narrowband Power Line Communications. Energies 2017, 10, 1782.
  11. Della Giustina, D.; Rinaldi, S. Hybrid Communication Network for the Smart Grid: Validation of a Field Test Experience. IEEE Trans. Power Deliv. 2015, 30, 2492-2500. [CrossRef]
  12. Rinaldi, S.; Bonafini, F.; Ferrari, P.; Flammini, A.; Sisinni, E.; Di Cara, D.; Panzavecchia, N.; Tinè, G.; Cataliotti, A.; Cosentino, V.; et al. Characterization of IP-Based Communication for Smart Grid Using Software-Defined Networking. IEEE Trans. Instrum. Meas. 2018, 67, 2410-2419. [CrossRef]
  13. Zhang, J.; Hasandka, A.; Wei, J.; Alam, S.; Elgindy, T.; Florita, A.; Hodge, B. Hybrid Communication Architectures for Distributed Smart Grid Applications. Energies 2018, 11, 871. [CrossRef]
  14. Artale, G.; Cataliotti, A.; Cosentino, V.; Di Cara, D.; Guaiana, S.; Nuccio, S.; Panzavecchia, N.; Tinè, G. Smart Interface Devices for Distributed Generation in Smart Grids: The Case of Islanding. IEEE Sens. J. 2017, 17, 7803-7811. [CrossRef]
  15. Galli, S.; Scaglione, A.; Wang, Z. For the Grid and Through the Grid: The Role of Power Line Communications in the Smart Grid. Proc. IEEE 2011, 99, 998-1027. [CrossRef]
  16. Lampe, L.A.; Tonello, M.; Swart, T.G. Power Line Communications: Principles, Standards and Applications from Multimedia to Smart Grid, 2nd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2016.
  17. Andreadou, N.; Kotsakis, E.; Masera, M. Smart Meter Traffic in a Real LV Distribution Network. Energies 2018, 11, 1156. [CrossRef]
  18. Bali, M.C.; Rebai, C. Improved maxismum likelihood S-FSK receiver for PLC modem in AMR. J. Electr. Comput. Eng. 2012, 2012, 452402. [CrossRef]
  19. Rinaldi, S.; Ferrari, P.; Flammini, A.; Rizzi, M.; Sisinni, E.; Vezzoli, A. Performance analysis of power line communication in industrial power distribution network. Comput. Stand. Interfaces 2015, 42, 9-16. [CrossRef]
  20. Ouissi, S.; Ben Rhouma, O.; Rebai, C. Statistical modeling of mains zero crossing variation in powerline communication. Meas. J. Int. Meas. Confed. 2016, 90, 158-167.
  21. Elfeki, I.; Jacques, S.; Aouichak, I.; Doligez, T.; Raingeaud, Y.; Le Bunetel, J. Characterization of Narrowband Noise and Channel Capacity for Powerline Communication in France. Energies 2018, 11, 3022. [CrossRef]
  22. Antoniali, M.; Versolatto, F.; Tonello, A.M. An Experimental Characterization of the PLC Noise at the Source. IEEE Trans. Power Deliv. 2016, 31, 1068-1075. [CrossRef]
  23. Cataliotti, A.; Cosentino, V.; Di Cara, D.; Guaiana, S.; Panzavecchia, N.; Tinè, G. A New Solution for Low-Voltage Distributed Generation Interface Protection System. IEEE Trans. Instrum. Meas. 2015, 64, 2086-2095. [CrossRef]
  24. Masood, B.; Baig, S. Standardization and deployment scenario of generation NB-PLC technologies. Renew. Sustain. Energy Rev. 2016, 65, 1033-1047. [CrossRef]
  25. Kabalci, Y. A survey on smart metering and smart grid communication. Renew. Sustain. Energy Rev. 2016, 57, 302-318. [CrossRef]
  26. Chien, Y.; Yu, H. Mitigating Impulsive Noise for Wavelet-OFDM Powerline Communication. Energies 2019, 12, 1567. [CrossRef]
  27. Khan, F.; Baig, S.; Noreen, U.; Yousaf, A. An Overview of OFDM Based Narrowb and Power Line Communication Standards for Smart Grid Applications. World Appl. Sci. J. 2012, 20, 1236-1242.
  28. Janse van Rensburg, P.A.; Sibanda, M.P.; Ferreira, H.C. Integrated Impedance-Matching Coupler for Smart Building and Other Power-Line Communications Applications. IEEE Trans. Power Deliv. 2015, 30, 949-956.
  29. Chrysochos, A.I.; Papadopoulos, T.A.; ElSamadouny, A.; Papagiannis, G.K.; Al-Dhahir, N. Optimized MIMO-OFDM design for narrowband-PLC applications in medium-voltage smart distribution grids. Electr. Power Syst. Res. 2016, 140, 253-262. [CrossRef]
  30. Zhao, H.; Zhang, W.; Wang, Y. Characteristic Impedance Analysis of Medium-Voltage Underground Cables with Grounded Shields and Armors for Power Line Communication. Electronics 2019, 8, 571. [CrossRef]
  31. Robson, S.; Haddad, A.; Griffiths, H. A New Methodology for Network Scale Simulation of Emerging Power Line Communication Standards. IEEE Trans. Power Deliv. 2018, 33, 1025-1034. [CrossRef]
  32. Cataliotti, A.; Cosentino, V.; Guaiana, S.; Di Cara, D.; Panzavecchia, N.; Tinè, G. Experimental investigation on PLC signal crossing of power transformers. In Proceedings of the 2014 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), Montevideo, Uruguay, 12-15 May 2014; pp. 1235-1239.
  33. Lefort, R.; Vauzelle, R.; Courtecuisse, V.; Idir, N.; Poussard, A.M. Influence of the MV/LV Transformer Impedance on the Propagation of the PLC Signal in the Power Grid. IEEE Trans. Power Deliv. 2017, 32, 1339-1349. [CrossRef]
  34. Fiorelli, R.; Cataliotti, A.; Di Cara, D.; Tinè, G. Coupling circuit for power line communications. U.S. Patent 8896393 B2, 25 November 2014.
  35. Artale, G.; Cataliotti, A.; Cosentino, V.; Di Cara, D.; Fiorelli, R.; Guaiana, S.; Tine, G. A New Low Cost Coupling System for Power Line Communication on Medium Voltage Smart grids. IEEE Trans. Smart Grid 2018, 9, 3321-3329. [CrossRef]
  36. Artale, G.; Cataliotti, A.; Cosentino, V.; Di Cara, D.; Fiorelli, R.; Guaiana, S.; Panzavecchia, N.; Tine, G. A new low cost power line communication solution for smart grid monitoring and management. IEEE Instrum. Meas. Mag. 2018, 21, 29-33. [CrossRef]
  37. Artale, G.; Cataliotti, A.; Cosentino, V.; Di Cara, D.; Fiorelli, R.; Guaiana, S.; Panzavecchia, N.; Tine, G. A new PLC-based smart metering architecture for medium/low voltage grids: Feasibility and experimental characterization. Meas. J. Int. Meas. Confed. 2018, 129, 479-488. [CrossRef]
  38. Sharma, K.; Saini, L.M. Power-line communications for smart grid: Progress, challenges, opportunities and status. Renew. Sustain. Energy Rev. 2017, 67, 704-751. [CrossRef]
  39. Narrowband Orthogonal Frequency Division Multiplexing Power Line Communication Transceivers for G3-PLC Networks-SERIES G: Transmission System and Media Digital System and Networks; ITU-T G.9903; ITU: Geneva, Switzerland, August 2017.
  40. Narrowband Orthogonal Frequency Division Multiplexing Power Line Communication Transceivers-Power Spectral Density Specification-Series G: Transmission System and Media Digital System and Networks; ITU-T G.9901; ITU: Geneva, Switzerland, June 2017.
  41. IEEE Standard for Low-Frequency (Less Than 500 kHz) Narrowband Power Line Communications for Smart Grid Applications; IEEE Std 1901.2; IEEE: Piscataway, NJ, USA, 2013.
  42. Chauvenet, C.; Etheve, G.; Sedjai, M.; Sharma, M. G3-PLC based IoT sensor networks for SmartGrid. In Proceedings of the 2017 IEEE International Symposium on Power Line Communications and its Applications (ISPLC 2017), Madrid, Spain, 3-5 April 2017. [CrossRef] Energies 2019, 12, 2474 23 of 23
  43. STMicroeletronics: STCOMET Application Note. Available online: https://www.st.com/content/ccc/resource/ technical/document/application_note/70/04/00/0e/98/7d/48/1e/DM00210549.pdf/files/DM00210549.pdf/jcr: content/translations/en.DM00210549.pdf (accessed on 18 May 2019).
  44. Costa, S.; de Queiroz, A.C.M.; Adebisi, B.; da Costa, V.L.R.; Ribeiro, M.V. Coupling for power line communications: A survey. J. Commun. Inf. Syst. 2017, 32, 8-22. [CrossRef]
  45. Doremus, J.A. Coupling Unit. U.S. Patent 2756414 A, 24 July 1952. Priority Date: 1 March 1952. Available online: https://www.google.com/patents/US2756414 (accessed on 8 June 2019).
  46. American National Standard Requirements for Power-Line Carrier Coupling Capacitors and Coupling Capacitor Voltage Transformers; ANSI C93.1-1999; IEEE: Piscataway, NJ, USA, 1999.
  47. Kikkert, C.J. Power transformer modelling and MV PLC coupling networks. In 2011 IEEE PES Innovative Smart Grid Technologies; IEEE: Perth, Australia, 2011; pp. 1-6.
  48. Yu, Q.; Holmes, T.; Naishadham, K. RF equivalent circuit modeling of ferrite-core inductors and characterization of core materials. IEEE Trans. Electromagn. Compat. 2002, 44, 258-262.
  49. Wouters, P.; van der Wielen, P. Effect of cable load impedance on coupling schemes for MV power line communication. In Proceedings of the IEEE Bologna Power Technology Conference, Bologna, Italy, 23-26 June 2003; p. 7.
  50. Wang, X.Y.; Gao, X. The typical designs of PLC network in MV distribution network. In Proceedings of the IEEE International Symposium on Power Line Communications and Its Applications, Beijing, China, 27-30 March 2012; pp. 19-23.
  51. Live Working-Voltage Detectors-Part 1: Capacitive Type to be Used for Voltages Exceeding 1 kV a.c.; IEC 61243-1; IEC: Geneva, Switzerland, 2009.