Density functional theory study of small nickel clusters
2012, Journal of Molecular Modeling
https://doi.org/10.1007/S00894-011-1100-XAbstract
The stable geometries and atomization energies for the clusters Ni n (n=2-5) are predicted with all-electron density functional theory (DFT), using the BMK hybrid functional and a Gaussian basis set. Possible isomers and several spin states of these nickel clusters are considered systematically. The ground spin state and the lowest energy isomers are identified for each cluster size. The results are compared to available experimental and other theoretical data. The molecular orbitals of the largest cluster are plotted for all spin states. The relative stabilities of these states are interpreted in terms of superatom orbitals and no-pair bonding.
References (37)
- Ovsitser O, Kondratenko EV (2009) Similarity and differences in the oxidative dehydrogenation of C 2 -C 4 alkanes over nano-sized VO x species using N 2 O and O 2 . Catal Today 142:138-142. doi:10.1016/j.cattod.2008.09.012
- Uddin J, Morales CM, Maynard JH, Landis CR (2006) Compu- tational studies of metal-ligand bond enthalpies across the transition metal series. Organometallics 25:5566-5581. doi:10.1021/om0603058
- Simoes JAM, Beauchamp JL (1990) Transition metal hydrogen and metal carbon bond strengths: the keys to catalysis. Chem Rev 90:629-688
- Zubarev DY, Boldyrev AI (2008) Developing paradigms of chemical bonding: adaptive natural density partitioning. Phys Chem Chem Phys 10:5207-5217. doi:10.1039/b804083d
- Zubarev DY, Boldyrev AI (2009) Deciphering chemical bonding in golden cages. J Phys Chem A 113:866-868. doi:10.1021/jp808103t
- Jensen KP, Roos BO, Ryde U (2007) Performance of density functionals for first row transition metal systems. J Chem Phys 126:014103-014116
- Furche F, Perdew JP (2006) The performance of semilocal and hybrid density functionals in 3d transition-metal chemistry. J Chem Phys 124:044103-044129
- Harrison JG (1983) Density functional calculations for atoms in the 1st transition Series. J Chem Phys 79:2265-2269
- Arvizu GL, Calaminici P (2007) Assessment of density functional theory optimized basis sets for gradient corrected functionals to transition metal systems: the case of small Ni n (n ≤ 5) clusters. J Chem Phys 126:194102-194111. doi:19410210.1063/1.2735311
- Kant A (1964) Dissociation energies of diatomic molecules of the transition elements. I. Nickel. J Chem Phys 41:1872-1876
- Knickelbein MB, Yang S, Riley SJ (1990) Near-threshold photoionization of nickel clusters: ionization potentials for Ni 3 to Ni 90 . J Chem Phys 93:94-104
- Luo CL (2000) The structure of small nickel clusters: Ni 2 -Ni 19 . Model Simul Mater Sci Eng 8:95-101
- Michelini MC, Diez RP, Jubert AH (2004) Density functional study of the ionization potentials and electron affinities of small Ni n clusters with n=2-6 and 8. Comput Mater Sci 31:292-298. doi:10.1016/j.commatsci.2004.03.018
- Moskovits M, Hulse JE (1977) Ultraviolet-visible spectra of diatomic, triatomic, and higher nickel clusters. J Chem Phys 66:3988-3994
- Nygren MA, Siegbahn PEM, Wahlgren U, Akeby H (1992) Theoretical ionization energies and geometries for Ni N (4 ≤ N ≤9). J Phys Chem 96:3633-3640
- Onal I, Sayar A, Uzun A, Ozkar S (2009) A density functional study of Ni 2 and Ni 13 nanoclusters. J Comput Theor Nanos 6:867-872. doi:10.1166/jctn.2009.1119
- Parks EK, Zhu L, Ho J, Riley SJ (1994) The structure of small nickel clusters Ni 3 -Ni 15 . J Chem Phys 100:7206-7222
- Pinegar JC, Langenberg JD, Arrington CA, Spain EM, Morse MD (1995) Ni 2 revisited: reassignment of the ground electronic state. J Chem Phys 102:666-674
- Reuse FA, Khanna SN (1995) Geometry, electronic-structure, and magnetism of small Ni N (N=2-6, 8, 13) clusters. Chem Phys Lett 234:77-81
- Reuse FA, Khanna SN (1999) Photoabsorption spectrum of small Ni n (n=2-6, 13) clusters. Eur Phys J D 6:77-81
- Pouamerigo R, Merchan M, Nebotgil I, Malmqvist PA, Roos BO (1994) The chemical-bonds in CuH, Cu2, NiH, and Ni 2 studied with multiconfigurational 2nd-order perturbation theory. J Chem Phys 101:4893-4902
- Grigoryan VG, Springborg M (2004) Structural and energetic properties of nickel clusters: 2 ≤ N ≤ 150. Phys Rev B 70:205415- 205429. doi:10.1103/PhysRevB.70.205415
- St Petkov P, Vayssilov GN, Kruger S, Rosch N (2006) Structure, stability, electronic and magnetic properties of Ni 4 clusters containing impurity atoms. Phys Chem Chem Phys 8:1282- 1291. doi:10.1039/b518175e
- Xie Z, Ma QM, Liu Y, Li YC (2005) First-principles study of the stability and Jahn-Teller distortion of nickel clusters. Phys Lett A 342:459-467. doi:10.1016/j.physleta.2005.05.067
- Boese AD, Martin JML (2004) Development of density func- tionals for thermochemical kinetics. J Chem Phys 121:3405-3416
- Frisch MJ et al. (1994-2003, 2004) Gaussian 03, revision D.01. Gaussian Inc., Wallingford
- Wachters AJ (1970) Gaussian basis set for molecular wave- functions containing third-row atoms. J Chem Phys 52:1033-1038
- Hay PJ (1977) Gaussian basis sets for molecular calculations- representation of 3d orbitals in transition-metal atoms. J Chem Phys 66:4377-4384
- Harris J (1985) Simplified method for calculating the energy of weakly interacting fragments. Phys Rev B 31:1770-1779
- Goel S, Masunov AE (2008) Potential energy curves and electronic structure of 3d transition metal hydrides and their cations. J Chem Phys 129:214302-14
- Goel S, Masunov AE (2008) First-principles study of transition metal diatomics as the first step in multiscale simulations of carbon nanotube growth process. In: 4th Int Conf on Multiscale Material Modeling, Tallahassee, FL, USA, 27-31 Oct 2008, pp 110-113
- Rabuck AD, Scuseria GE (1999) Improving self-consistent field convergence by varying occupation numbers. J Chem Phys 110:695-700
- Wang HM, Haouari H, Craig R, Lombardi JR, Lindsay DM (1996) Raman spectra of mass-selected nickel dimers in argon matrices. J Chem Phys 104:3420-3422
- Ham FS (2000) The Jahn-Teller effect: a retrospective view. J Lumin 85:193-197
- Jiang DE, Whetten RL, Luo WD, Dai S (2009) The smallest thiolated gold superatom complexes. J Phys Chem C 113:17291- 17295. doi:10.1021/jp9035937
- Monari A, Pitarch-Ruiz J, Bendazzoli GL, Evangelisti S, Sanchez- Marin J (2010) High-spin states in tetrahedral X 4 clusters (X=H, Li, Na, K). Int J Quantum Chem 110:874-884. doi:10.1002/ qua.21987
- Olson JK, Boldyrev AI (2009) Ab initio search for global minimum structures of the novel B 3 H y (y=4-7) neutral and anionic clusters. Inorg Chem 48:10060-10067. doi:10.1021/ ic900905h