Academia.eduAcademia.edu

Outline

Density functional theory study of small nickel clusters

2012, Journal of Molecular Modeling

https://doi.org/10.1007/S00894-011-1100-X

Abstract

The stable geometries and atomization energies for the clusters Ni n (n=2-5) are predicted with all-electron density functional theory (DFT), using the BMK hybrid functional and a Gaussian basis set. Possible isomers and several spin states of these nickel clusters are considered systematically. The ground spin state and the lowest energy isomers are identified for each cluster size. The results are compared to available experimental and other theoretical data. The molecular orbitals of the largest cluster are plotted for all spin states. The relative stabilities of these states are interpreted in terms of superatom orbitals and no-pair bonding.

References (37)

  1. Ovsitser O, Kondratenko EV (2009) Similarity and differences in the oxidative dehydrogenation of C 2 -C 4 alkanes over nano-sized VO x species using N 2 O and O 2 . Catal Today 142:138-142. doi:10.1016/j.cattod.2008.09.012
  2. Uddin J, Morales CM, Maynard JH, Landis CR (2006) Compu- tational studies of metal-ligand bond enthalpies across the transition metal series. Organometallics 25:5566-5581. doi:10.1021/om0603058
  3. Simoes JAM, Beauchamp JL (1990) Transition metal hydrogen and metal carbon bond strengths: the keys to catalysis. Chem Rev 90:629-688
  4. Zubarev DY, Boldyrev AI (2008) Developing paradigms of chemical bonding: adaptive natural density partitioning. Phys Chem Chem Phys 10:5207-5217. doi:10.1039/b804083d
  5. Zubarev DY, Boldyrev AI (2009) Deciphering chemical bonding in golden cages. J Phys Chem A 113:866-868. doi:10.1021/jp808103t
  6. Jensen KP, Roos BO, Ryde U (2007) Performance of density functionals for first row transition metal systems. J Chem Phys 126:014103-014116
  7. Furche F, Perdew JP (2006) The performance of semilocal and hybrid density functionals in 3d transition-metal chemistry. J Chem Phys 124:044103-044129
  8. Harrison JG (1983) Density functional calculations for atoms in the 1st transition Series. J Chem Phys 79:2265-2269
  9. Arvizu GL, Calaminici P (2007) Assessment of density functional theory optimized basis sets for gradient corrected functionals to transition metal systems: the case of small Ni n (n ≤ 5) clusters. J Chem Phys 126:194102-194111. doi:19410210.1063/1.2735311
  10. Kant A (1964) Dissociation energies of diatomic molecules of the transition elements. I. Nickel. J Chem Phys 41:1872-1876
  11. Knickelbein MB, Yang S, Riley SJ (1990) Near-threshold photoionization of nickel clusters: ionization potentials for Ni 3 to Ni 90 . J Chem Phys 93:94-104
  12. Luo CL (2000) The structure of small nickel clusters: Ni 2 -Ni 19 . Model Simul Mater Sci Eng 8:95-101
  13. Michelini MC, Diez RP, Jubert AH (2004) Density functional study of the ionization potentials and electron affinities of small Ni n clusters with n=2-6 and 8. Comput Mater Sci 31:292-298. doi:10.1016/j.commatsci.2004.03.018
  14. Moskovits M, Hulse JE (1977) Ultraviolet-visible spectra of diatomic, triatomic, and higher nickel clusters. J Chem Phys 66:3988-3994
  15. Nygren MA, Siegbahn PEM, Wahlgren U, Akeby H (1992) Theoretical ionization energies and geometries for Ni N (4 ≤ N ≤9). J Phys Chem 96:3633-3640
  16. Onal I, Sayar A, Uzun A, Ozkar S (2009) A density functional study of Ni 2 and Ni 13 nanoclusters. J Comput Theor Nanos 6:867-872. doi:10.1166/jctn.2009.1119
  17. Parks EK, Zhu L, Ho J, Riley SJ (1994) The structure of small nickel clusters Ni 3 -Ni 15 . J Chem Phys 100:7206-7222
  18. Pinegar JC, Langenberg JD, Arrington CA, Spain EM, Morse MD (1995) Ni 2 revisited: reassignment of the ground electronic state. J Chem Phys 102:666-674
  19. Reuse FA, Khanna SN (1995) Geometry, electronic-structure, and magnetism of small Ni N (N=2-6, 8, 13) clusters. Chem Phys Lett 234:77-81
  20. Reuse FA, Khanna SN (1999) Photoabsorption spectrum of small Ni n (n=2-6, 13) clusters. Eur Phys J D 6:77-81
  21. Pouamerigo R, Merchan M, Nebotgil I, Malmqvist PA, Roos BO (1994) The chemical-bonds in CuH, Cu2, NiH, and Ni 2 studied with multiconfigurational 2nd-order perturbation theory. J Chem Phys 101:4893-4902
  22. Grigoryan VG, Springborg M (2004) Structural and energetic properties of nickel clusters: 2 ≤ N ≤ 150. Phys Rev B 70:205415- 205429. doi:10.1103/PhysRevB.70.205415
  23. St Petkov P, Vayssilov GN, Kruger S, Rosch N (2006) Structure, stability, electronic and magnetic properties of Ni 4 clusters containing impurity atoms. Phys Chem Chem Phys 8:1282- 1291. doi:10.1039/b518175e
  24. Xie Z, Ma QM, Liu Y, Li YC (2005) First-principles study of the stability and Jahn-Teller distortion of nickel clusters. Phys Lett A 342:459-467. doi:10.1016/j.physleta.2005.05.067
  25. Boese AD, Martin JML (2004) Development of density func- tionals for thermochemical kinetics. J Chem Phys 121:3405-3416
  26. Frisch MJ et al. (1994-2003, 2004) Gaussian 03, revision D.01. Gaussian Inc., Wallingford
  27. Wachters AJ (1970) Gaussian basis set for molecular wave- functions containing third-row atoms. J Chem Phys 52:1033-1038
  28. Hay PJ (1977) Gaussian basis sets for molecular calculations- representation of 3d orbitals in transition-metal atoms. J Chem Phys 66:4377-4384
  29. Harris J (1985) Simplified method for calculating the energy of weakly interacting fragments. Phys Rev B 31:1770-1779
  30. Goel S, Masunov AE (2008) Potential energy curves and electronic structure of 3d transition metal hydrides and their cations. J Chem Phys 129:214302-14
  31. Goel S, Masunov AE (2008) First-principles study of transition metal diatomics as the first step in multiscale simulations of carbon nanotube growth process. In: 4th Int Conf on Multiscale Material Modeling, Tallahassee, FL, USA, 27-31 Oct 2008, pp 110-113
  32. Rabuck AD, Scuseria GE (1999) Improving self-consistent field convergence by varying occupation numbers. J Chem Phys 110:695-700
  33. Wang HM, Haouari H, Craig R, Lombardi JR, Lindsay DM (1996) Raman spectra of mass-selected nickel dimers in argon matrices. J Chem Phys 104:3420-3422
  34. Ham FS (2000) The Jahn-Teller effect: a retrospective view. J Lumin 85:193-197
  35. Jiang DE, Whetten RL, Luo WD, Dai S (2009) The smallest thiolated gold superatom complexes. J Phys Chem C 113:17291- 17295. doi:10.1021/jp9035937
  36. Monari A, Pitarch-Ruiz J, Bendazzoli GL, Evangelisti S, Sanchez- Marin J (2010) High-spin states in tetrahedral X 4 clusters (X=H, Li, Na, K). Int J Quantum Chem 110:874-884. doi:10.1002/ qua.21987
  37. Olson JK, Boldyrev AI (2009) Ab initio search for global minimum structures of the novel B 3 H y (y=4-7) neutral and anionic clusters. Inorg Chem 48:10060-10067. doi:10.1021/ ic900905h