Discrete flow mapping: transport of phase space
Abstract
Energy distributions of high frequency linear wave fields are often modelled in terms of flow or transport equations with ray dynamics given by a Hamiltonian vector field in phase space. Applications arise in underwater and room acoustics, vibro-acoustics, seismology, electromagnetics, and quantum mechanics. Related flow problems based on general conservation laws are used, for example, in weather forecasting or molecular dynamics simulations. Solutions to these flow equations are often large scale, complex and high-dimensional, leading to formidable challenges for numerical approximation methods. This paper presents an efficient and widely applicable method, called discrete flow mapping, for solving such problems on triangulated surfaces. An application in structural dynamics -determining the vibro-acoustic response of a cast aluminium car body component -is presented.
References (41)
- Boon, J.A., Budd, C.J. & Hunt, G.W. (2007) Level set methods for the displacement of layered materials. Proc. R. Soc. A. 463(2082) 1447-1466.
- Bose, C.J. & Murray, R. (2001) The exact rate of approximation in Ulam's method. Discrete and Continuous Dynamical Systems 7 219-235.
- Blank, M., Keller G. & Liverani C. (2002) Ruelle-Perron-Frobenius spectrum for Anosov maps. Nonlinearity 15 1905-1973.
- Celani, A., Cencini M., Mazzino A., & Vergassola M. (2004) Active and passive fields face to face, New Journal of Physics 6 72.
- Červený, V. (2001) Seismic ray theory. (Cambridge University Press, Cambridge, UK).
- Chappell, D.J., Giani, S. & Tanner, G. (2011) Dynamical energy analysis for built-up acoustic systems at high frequencies, J. Acoust. Soc. Am. 130(3), 1420-1429.
- Chappell, D.J., Tanner, G. & Giani, S. (2012) Boundary element dynamical energy analysis: a versatile high-frequency method suitable for two or three dimensional problems, J. Comp. Phys. 231, 6181-6191.
- Chappell, D.J. & Tanner, G. (2013) Solving the Liouville Equation via a boundary element method, J. Comp. Phys. 234, 487-498.
- Chappell D.J., Löchel D. Søndergaard N. & Tanner, G., (2013) Dynamical energy analysis on mesh grids: a new tool for describing the vibro-acoustic response of engineering structures. To appear in Wave Motion.
- Craik R. J. M., Bosmans I., Cabos C., Heron K. H., Sarradj E., Steel J. A. & Vermeir G. (2004) Structural transmission at line junctions: a benchmarking exercise, J. Sound Vib. 272, 1086-1096.
- Cvitanović P., Artuso R. Mainieri R., Tanner G. & and Vattay G. (2012) Chaos: Classical and Quantum, ChaosBook.org (Niels Bohr Institute, Copenhagen, Denmark).
- DeSanto, J.A. (1992) Scalar Wave Theory: Green's Functions and Applications, (Springer-Verlag, Berlin, Germany) (Chap. 3).
- Ding, J. & Zhou, A. (1996) Finite approximations of Frobenius-Perron operators: A solution of Ulam's conjecture to multi-dimensional transformations. Physica D 92, 61-68.
- Engquist, B. & Runborg, O. (2003) Computational high frequency wave propagation. Acta Numerica 12, 181-266.
- Froyland, G., Junge, O. & Koltai, P. (2013) Estimating long term behavior of flows without trajectory integration: the infinitesimal generator approach. SIAM J. Num. Anal. 51(1), 223-247.
- Hemmady, S., Antonsen, Jr., T. M., Ott, E., Anlage, S. M. (2012) Statistical Prediction and Measurement of Induced Voltages on Components within Complicated Enclosures: A Wave-Chaotic Approach. IEEE Trans. Electromagnetic Compatibility, 54(4), 758 -771.
- Jensen, F.B., Kuperman, W.J., Porter, M.B. & Schmidt, H. (1993) Computational Ocean Acoustics. (Springer, New York, USA).
- Junge, O. & Koltai, P. (2009) Discretization of the Frobenius-Perron operator using a sparse Haar tensor basis -the Sparse Ulam method. SIAM J. Num. Anal. 47, 3464-3485.
- Keane, A.J. Energy Flows between Arbitrary Configurations of Conservatively Coupled Multi-Modal Elastic Subsystems. (1992) Proc. R. Soc. Lond. A. 436(1898) 537-568.
- Kimmel, R. & Sethian, J.A. (1998) Computing geodesic paths on manifolds. Proceedings of the National Academy of Sciences of the USA 95, 8431-8435.
- Langley, R. S. & Heron K. H. (1990) Elastic wave transmission through plate/beam junctions, J. Sound Vib. 143, 241-253.
- Langley, R.S. (1992) A wave intensity technique for the analysis of high frequency vibrations. J. Sound. Vib. 159, 483-502.
- Langley, R.S. & Bercin, A.N. (1994) Wave intensity analysis for high frequency vibrations. Phil. Trans. Roy. Soc. Lond. A 346, 489-499.
- Le Bot, A. (1998) A vibroacoustic model for high frequency analysis. J. Sound. Vib. 211, 537-554.
- Le Bot, A. (2002) Energy transfer for high frequencies in built-up structures. J. Sound. Vib. 250, 247-275.
- Le Bot, A. (2006) Energy exchange in uncorrelated ray fields of vibroacoustics. J. Acoust. Soc. Am. 120(3), 1194-1208.
- LeVeque, R. J. (1992) Numerical Methods for Conservation Laws. Lectures in Mathematics: ETH Zürich, (Birkhäuser, Basel, Swizerland).
- Lippolis, D. & Cvitanović, P. (2010) How well can one resolve the state space of a chaotic map? Phys. Rev. Lett., 104, 014101.
- Lyon, R.H. (1969) Statistical analysis of power injection and response in structures and rooms. J. Acoust. Soc. Am. 45, 545-565.
- Lyon R.H. & DeJong R. G. (1995) Theory and Application of Statistical Energy Analysis, (Butterworth- Heinemann, Boston, USA), 2nd edn.
- Martinez, D., Vehlo, L. & Carvalho, P.C. (2005) Computing geodesics on triangular meshes. Computers & Graphics 29, 667-675.
- Noé F., Schütte C., Vanden-Eijnden E., Reich L. & Weikl T. R. (2009) Constructing the equilibrium ensemble of folding pathways from short off-equilibrium simulations. Proceedings of the National Academy of Sciences of the USA 106, 19011-19016.
- Norris, A.N. & Rebinsky, D.A. (1994) Membrane and Flexural Waves on Thin Shells. ASME J. Vib. Acoust. 116, 457-467.
- Norris, A.N. (1995) Rays, beams and quasimodes on thin shell structures. Wave Motion 21, 127-147.
- Osher, S & Fedkiw, R.P. (2001) Level Set Methods: An Overview and Some Recent Results. J. Comp. Phys. 169, 463-502.
- Runborg, O. (2007) Mathematical Models and Numerical Methods for High Frequency Waves. Commun. Comput. Phys. 2(5), 827-880.
- Sommer, M. & Reich, S. (2010) Phase space volume conservation under space and time discretization schemes for the shallow-water equations. Monthly Weather Review, 138, 4229-4236.
- Tanner, G. and Søndergaard, N. (2007) Wave chaos in acoustics and elasticity. J. Phys. A 40, R443-R509.
- Tanner, G. (2009) Dynamical energy analysis -Determining wave energy distributions in vibro-acoustical structures in the high-frequency regime. J. Sound. Vib. 320, 1023-1038.
- Yang, Y., Norris, A.N. & Couchman, L.S. (1996) Ray tracing over smooth elastic shells of arbitrary shape. J. Acoust. Soc. Am. 99(1), 55-64.
- Ying, L. & Candès, E.J. (2006) The phase flow method. J. Comp. Phys. 220, 184-215.