Academia.eduAcademia.edu

Outline

Nanocouplers for Infrared and Visible Light

2012, Advances in OptoElectronics

https://doi.org/10.1155/2012/839747

Abstract

An efficient and compact coupler -a device that matches a micro-waveguide and a nano-waveguide -is an essential component for practical applications of nanophotonic systems. The number of coupling approaches has been rapidly increasing in the past ten years with the help of plasmonic structures and metamaterials. In this paper we overview recent as well as common solutions for nanocoupling. More specifically we consider the physical principles of operation of the devices based on a tapered waveguide section, a direct coupler, a lens and a scatterer and support them with a number of examples.

References (168)

  1. D. A. B. Miller, "Optical interconnects to electronic chips.," Applied Optics, vol. 49, no. 25, p. F59- F70, Sep. 2010.
  2. S. Kawata, M. Ohtsu, and M. Irie, Nano-optics, vol. 84. Springer Verlag, 2002.
  3. S. A. Maier, Plasmonics: fundamentals and applications. Springer Verlag, 2007.
  4. S. I. Bozhevolnyi, Plasmonic nanoguides and circuits. Pan Stanford, 2008.
  5. R. Zia, M. D. Selker, P. B. Catrysse, and M. L. Brongersma, "Geometries and materials for subwavelength surface plasmon modes.," Journal of the Optical Society of America. A, vol. 21, no. 12, pp. 2442-2446, Dec. 2004.
  6. A. Boltasseva, T. Nikolajsen, K. Leosson, K. Kjaer, M. S. Larsen, and S. I. Bozhevolnyi, "Integrated optical components utilizing long-range surface plasmon polaritons," Journal of Lightwave Technology, vol. 23, no. 1, pp. 413-422, Jan. 2005.
  7. S. I. Bozhevolnyi, "Effective-index modeling of channel plasmon polaritons.," Optics Express, vol. 14, no. 20, pp. 9467-9476, Oct. 2006.
  8. S. Bozhevolnyi, V. Volkov, E. Devaux, and T. Ebbesen, "Channel Plasmon-Polariton Guiding by Subwavelength Metal Grooves," Physical Review Letters, vol. 95, no. 4, p. 046802, Jul. 2005.
  9. E. Moreno, S. Rodrigo, S. Bozhevolnyi, L. Martín-Moreno, and F. García-Vidal, "Guiding and Focusing of Electromagnetic Fields with Wedge Plasmon Polaritons," Physical Review Letters, vol. 100, no. 2, p. 023901, Jan. 2008.
  10. L. Liu, Z. Han, and S. He, "Novel surface plasmon waveguide for high integration.," Optics Express, vol. 13, no. 17, pp. 6645-6650, Aug. 2005.
  11. G. Veronis and S. Fan, "Modes of Subwavelength Plasmonic Slot Waveguides," Journal of Lightwave Technology, vol. 25, no. 9, pp. 2511-2521, Sep. 2007.
  12. S. Maier, P. G. Kik, and H. Atwater, "Observation of coupled plasmon-polariton modes in Au nanoparticle chain waveguides of different lengths: Estimation of waveguide loss," Applied Physics Letters, vol. 81, no. 9, pp. 1714-1716, 2002.
  13. M. L. Brongersma and P. G. Kik, Surface plasmon nanophotonics, vol. 131. Springer Verlag, 2007.
  14. M. I. Stockman, "Nanoplasmonics: past, present, and glimpse into future," Optics Express, vol. 19, no. 22, pp. 2321-2327, 2011.
  15. D. K. Gramotnev and S. I. Bozhevolnyi, "Plasmonics beyond the diffraction limit," Nature Photonics, vol. 4, no. 2, pp. 83-91, Jan. 2010.
  16. S. W. Hell and J. Wichmann, "Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy.," Optics letters, vol. 19, no. 11, pp. 780-2, Jun. 1994.
  17. E. Rittweger, K. Y. Han, S. E. Irvine, C. Eggeling, and S. W. Hell, "STED microscopy reveals crystal colour centres with nanometric resolution," Nature Photonics, vol. 3, no. March, pp. 144-147, 2009.
  18. G. Brambilla, V. Finazzi, and D. J. Richardson, "Ultra-low-loss optical fiber nanotapers," Optics Express, vol. 12, no. 10, pp. 4421-4425, 2004.
  19. M. Sumetsky, "How thin can a microfiber be and still guide light?," Optics Letters, vol. 31, no. 7, pp. 870-872, 2006.
  20. L. Zimmermann, "State of the art and trends in silicon photonics packaging. http://www.siliconphotonics.eu/workshop230511_slides.html." 2011.
  21. Q. V. Tran, S. Combrié, P. Colman, and A. De Rossi, "Photonic crystal membrane waveguides with low insertion losses," Applied Physics Letters, vol. 95, no. 6, p. 061105, 2009.
  22. N. Gregersen, T. R. Nielsen, J. Claudon, J.-M. Gérard, and J. Mørk, "Controlling the emission profile of a nanowire with a conical taper.," Optics Letters, vol. 33, no. 15, pp. 1693-5, Aug. 2008.
  23. J. Claudon et al., "A highly efficient single-photon source based on a quantum dot in a photonic nanowire," Nature Photonics, vol. 4, no. March, pp. 174-177, 2010.
  24. V. M. N. Passaro and M. L. Notte, "Optimizing SOI Slot Waveguide Fabrication Tolerances and Strip-Slot Coupling for Very Efficient Optical Sensing," Sensors, vol. 12, no. 3, pp. 2436-2455, Feb. 2012.
  25. H. Zhang, J. Zhang, S. Chen, and J. Song, "CMOS-Compatible Fabrication of Silicon Based Sub-100 nm Slot Waveguide with Efficient Channel-Slot Coupler," Photonics, vol. 24, no. 1, pp. 10-12, 2012.
  26. N. M. Arslanov and S. A. Moiseev, "Ultrahigh interference spatial compression of light inside the subwavelength aperture of a near-field optical probe," Journal of the Optical Society of America. A, vol. 24, no. 3, pp. 831-838, Mar. 2007.
  27. A. Rusina, M. Durach, K. A. Nelson, and M. I. Stockman, "Nanoconcentration of terahertz radiation in plasmonic waveguides," Optics Express, vol. 16, no. 23, pp. 18576-18589, Oct. 2008.
  28. J. Liu, R. Mendis, and D. M. Mittleman, "The transition from a TEM-like mode to a plasmonic mode in parallel-plate waveguides," Applied Physics Letters, vol. 98, no. 23, p. 231113, 2011.
  29. K. Iwaszczuk, A. Andryieuski, A. Lavrinenko, X.-C. Zhang, and P. U. Jepsen, "Non-invasive terahertz field imaging inside parallel plate waveguides," Applied Physics Letters, vol. 99, no. 7, p. 071113, 2011.
  30. K. Iwaszczuk, A. Andryieuski, A. Lavrinenko, X. Zhang, and P. U. Jepsen, "Terahertz field enhancement to the MV/cm regime in a tapered parallel plate waveguide," Optics Express, vol. 20, no. 8, pp. 1289-1295, 2012.
  31. D. F. P. Pile and D. K. Gramotnev, "Adiabatic and nonadiabatic nanofocusing of plasmons by tapered gap plasmon waveguides," Applied Physics Letters, vol. 89, no. 4, p. 041111, 2006.
  32. I. Park, S. Kim, J. Choi, D. Lee, and Y. Kim, "Plasmonic generation of ultrashort extreme-ultraviolet light pulses," Nature Photonics, no. October, pp. 1-5, 2011.
  33. S. Vedantam, H. Lee, J. Tang, J. Conway, M. Staffaroni, and E. Yablonovitch, "A plasmonic dimple lens for nanoscale focusing of light.," Nano Letters, vol. 9, no. 10, pp. 3447-52, Oct. 2009.
  34. F. Renna, D. Cox, and G. Brambilla, "Efficient sub-wavelength light confinement using surface plasmon polaritons in tapered fibers.," Optics Express, vol. 17, no. 9, pp. 7658-63, Apr. 2009.
  35. H. Choi, D. F. Pile, S. Nam, G. Bartal, and X. Zhang, "Compressing surface plasmons for nano-scale optical focusing.," Optics Express, vol. 17, no. 9, pp. 7519-24, Apr. 2009.
  36. M. Stockman, "Nanofocusing of Optical Energy in Tapered Plasmonic Waveguides," Physical Review Letters, vol. 93, no. 13, p. 137404, Sep. 2004.
  37. S. Maier, S. Andrews, L. Martín-Moreno, and F. García-Vidal, "Terahertz Surface Plasmon-Polariton Propagation and Focusing on Periodically Corrugated Metal Wires," Physical Review Letters, vol. 97, no. 17, p. 176805, Oct. 2006.
  38. E. Verhagen, M. Spasenović, A. Polman, and L. Kuipers, "Nanowire Plasmon Excitation by Adiabatic Mode Transformation," Physical Review Letters, vol. 102, no. 20, p. 203904, May 2009.
  39. Z. Xiu-Li, F. Yong-Qi, W. Shi-Yong, P. An-Jin, and C. Zhong-Heng, "Funnel-Shaped Arrays of Metal Nano-Cylinders for Nano-Focusing," Chinese Physics Letters, vol. 25, no. 9, pp. 3296-3299, Sep. 2008.
  40. A. Govyadinov and V. Podolskiy, "Metamaterial photonic funnels for subdiffraction light compression and propagation," Physical Review B, vol. 73, no. 15, p. 155108, Apr. 2006.
  41. S. Mühlig, C. Rockstuhl, J. Pniewski, C. R. Simovski, S. A. Tretyakov, and F. Lederer, "Three- dimensional metamaterial nanotips," Physical Review B, vol. 81, no. 7, p. 075317, Feb. 2010.
  42. C. Rockstuhl, C. R. Simovski, S. A. Tretyakov, and F. Lederer, "Metamaterial nanotips," Applied Physics Letters, vol. 94, no. 11, p. 113110, 2009.
  43. S. Dong, H. Ding, Y. Liu, and X. Qi, "Investigation of evanescent coupling between tapered fiber and a multimode slab waveguide.," Applied optics, vol. 51, no. 10, pp. C152-7, Apr. 2012.
  44. R. Yan, P. Pausauskie, J. Huang, and P. Yang, "Direct photonic-plasmonic coupling and routing in single nanowires.," Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 50, pp. 21045-50, Dec. 2009.
  45. Q. Li and M. Qiu, "Structurally-tolerant vertical directional coupling between metal-insulator-metal plasmonic waveguide and silicon dielectric waveguide.," Optics Express, vol. 18, no. 15, pp. 15531- 43, Jul. 2010.
  46. Q. Li, Y. Song, G. Zhou, Y. Su, and M. Qiu, "Asymmetric plasmonic-dielectric coupler with short coupling length, high extinction ratio, and low insertion loss.," Optics Letters, vol. 35, no. 19, pp. 3153-5, Oct. 2010.
  47. C. Delacour et al., "Efficient Directional Coupling between Silicon and Copper Plasmonic Nanoslot Waveguides: toward Metal-Oxide-Silicon Nanophotonics," Nano Letters, vol. 10, pp. 2922-2926, Jul. 2010.
  48. R. Wan et al., "Excitation of short range surface plasmon polariton mode based on integrated hybrid coupler," Applied Physics Letters, vol. 97, no. 14, p. 141105, 2010.
  49. Q. Li et al., "Experimental Demonstration of Plasmon Propagation , Coupling , and Splitting in Silver Nanowire at 1550-nm Wavelength," IEEE Journal of Selected Topics in Quantum Electronics, vol. 17, no. 4, pp. 1107-1111, 2011.
  50. A. L. Pyayt, B. Wiley, Y. Xia, A. Chen, and L. Dalton, "Integration of photonic and silver nanowire plasmonic waveguides.," Nature Nanotechnology, vol. 3, no. 11, pp. 660-5, Nov. 2008.
  51. Z. Wang, N. Zhu, Y. Tang, L. Wosinski, D. Dai, and S. He, "Ultracompact low-loss coupler between strip and slot waveguides.," Optics Letters, vol. 34, no. 10, pp. 1498-500, May 2009.
  52. J. Gosciniak, V. S. Volkov, S. I. Bozhevolnyi, L. Markey, S. Massenot, and A. Dereux, "waveguides," Optics Express, vol. 18, no. 5, pp. 5314-5319, 2010.
  53. J. Tian, S. Yu, W. Yan, and M. Qiu, "Broadband high-efficiency surface-plasmon-polariton coupler with silicon-metal interface," Applied Physics Letters, vol. 95, no. 1, p. 013504, 2009.
  54. S. Y. Lee, J. Park, M. Kang, and B. Lee, "Highly efficient plasmonic interconnector based on the asymmetric junction between metal-dielectric-metal and dielectric slab waveguides," Optics Express, vol. 19, no. 10, pp. 4403-4411, 2011.
  55. Y. Song, J. Wang, Q. Li, M. Yan, and M. Qiu, "Broadband coupler between silicon waveguide and hybrid plasmonic waveguide," Optics Express, vol. 18, no. 12, p. 13173, Jun. 2010.
  56. X.-W. Chen, V. Sandoghdar, and M. Agio, "Nanofocusing radially-polarized beams for high- throughput funneling of optical energy to the near field.," Optics Express, vol. 18, no. 10, pp. 10878- 10887, May 2010.
  57. X.-W. Chen, V. Sandoghdar, and M. Agio, "Highly efficient interfacing of guided plasmons and photons in nanowires.," Nano Letters, vol. 9, no. 11, pp. 3756-61, Nov. 2009.
  58. R. M. Briggs, J. Grandidier, S. P. Burgos, E. Feigenbaum, and H. a Atwater, "Efficient Coupling between Dielectric-Loaded Plasmonic and Silicon Photonic Waveguides.," Nano Letters, vol. 10, pp. 4851-4857, Oct. 2010.
  59. Z. Han, a Y. Elezzabi, and V. Van, "Experimental realization of subwavelength plasmonic slot waveguides on a silicon platform.," Optics Letters, vol. 35, no. 4, pp. 502-4, Feb. 2010.
  60. D. L. MacFarlane et al., "Four-Port Nanophotonic Frustrated Total Internal Reflection Coupler," IEEE Photonics Technology Letters, vol. 24, no. 1, pp. 58-60, Jan. 2012.
  61. P. Ginzburg and M. Orenstein, "Plasmonic transmission lines: from micro to nano scale with lambda/4 impedance matching.," Optics Express, vol. 15, no. 11, pp. 6762-7, May 2007.
  62. J. Liu, H. Zhao, Y. Zhang, and S. Liu, "Resonant cavity based antireflection structures for surface plasmon waveguides," Applied Physics B, vol. 98, no. 4, pp. 797-802, Oct. 2009.
  63. Ş. Kocabaş, G. Veronis, D. Miller, and S. Fan, "Modal analysis and coupling in metal-insulator-metal waveguides," Physical Review B, vol. 79, no. 3, p. 035120, Jan. 2009.
  64. A. Pannipitiya, I. D. Rukhlenko, M. Premaratne, H. T. Hattori, and G. P. Agrawal, "Improved transmission model for metal-dielectric-metal plasmonic waveguides with stub structure," Optics Express, vol. 18, no. 6, pp. 229-232, 2010.
  65. M. Born, E. Wolf, and A. B. Bhatia, Principles of optics, vol. 10. Pergamon Pr., 1975.
  66. D. R. Beltrami et al., "Planar graded-index (GRIN) PECVD lens," Electronics Letters, vol. 32, no. 6, pp. 549-550, 1996.
  67. T.-H. Loh et al., "Ultra-compact multilayer Si/SiO(2) GRIN lens mode-size converter for coupling single-mode fiber to Si-wire waveguide.," Optics Express, vol. 18, no. 21, pp. 21519-33, Oct. 2010.
  68. "OZ Optics Ltd.," http://ozoptics.com.
  69. M. D. Feit and J. A. Fleck, "Light propagation in graded-index optical fibers," Applied Optics, vol. 17, no. 24, pp. 3990-3998, 1978.
  70. J. M. Nowosielski, R. Buczynski, F. Hudelist, A. J. Waddie, and M. R. Taghizadeh, "Nanostructured GRIN microlenses for Gaussian beam focusing," Optics Communications, vol. 283, no. 9, pp. 1938- 1944, May 2010.
  71. Y. Fu and X. Zhou, "Plasmonic Lenses: A Review," Plasmonics, vol. 5, no. 3, pp. 287-310, Jun. 2010.
  72. H. J. Lezec et al., "Beaming light from a subwavelength aperture.," Science (New York, N.Y.), vol. 297, no. 5582, pp. 820-2, Aug. 2002.
  73. A. G. Curto, A. Manjavacas, and F. J. García de Abajo, "Near-field focusing with optical phase antennas.," Optics Express, vol. 17, no. 20, pp. 17801-11, Sep. 2009.
  74. D. R. Jackson, J. Chen, R. Qiang, F. Capolino, and a a Oliner, "The role of leaky plasmon waves in the directive beaming of light through a subwavelength aperture.," Optics Express, vol. 16, no. 26, pp. 21271-81, Dec. 2008.
  75. L. Martín-Moreno, F. García-Vidal, H. Lezec, A. Degiron, and T. Ebbesen, "Theory of Highly Directional Emission from a Single Subwavelength Aperture Surrounded by Surface Corrugations," Physical Review Letters, vol. 90, no. 16, p. 167401, Apr. 2003.
  76. Y. Fu, C. Du, W. Zhou, and L. E. N. Lim, "Nanopinholes-Based Optical Superlens," Research Letters in Physics, vol. 2008, p. 148505, 2008.
  77. M. Consonni, J. Hazart, G. Lérondel, and a. Vial, "Nanometer scale light focusing with high cavity- enhanced output," Journal of Applied Physics, vol. 105, no. 8, p. 084308, 2009.
  78. J. Wang and W. Zhou, "Experimental Investigation of Focusing of Gold Planar Plasmonic Lenses," Plasmonics, vol. 5, no. 4, pp. 325-329, Jun. 2010.
  79. V. G. Veselago, "The electrodynamics of substances with simultaneously negative values of \epsilon and \mu," Soviet Physics Uspekhi, vol. 10, no. 4, pp. 509-514, 1968.
  80. J. Pendry, "Negative refraction makes a perfect lens," Physical Review Letters, vol. 85, no. 18, pp. 3966-9, Oct. 2000.
  81. N.-H. Shen et al., "Compact planar far-field superlens based on anisotropic left-handed metamaterials," Physical Review B, vol. 80, no. 11, p. 115123, Sep. 2009.
  82. K. Busch, G. Von Freymann, S. Linden, S. Mingaleev, L. Tkeshelashvili, and M. Wegener, "Periodic nanostructures for photonics," Physics reports, vol. 444, no. 3-6, pp. 101-202, 2007.
  83. W. Cai and V. Shalaev, Optical metamaterials: fundamentals and applications. Springer Verlag, 2009.
  84. A. Degiron, D. R. Smith, J. J. Mock, B. J. Justice, and J. Gollub, "Negative index and indefinite media waveguide couplers," Applied Physics A, vol. 87, no. 2, pp. 321-328, Feb. 2007.
  85. A. Andryieuski, C. Menzel, C. Rockstuhl, R. Malureanu, F. Lederer, and A. Lavrinenko, "Homogenization of resonant chiral metamaterials," Physical Review B, vol. 82, no. 23, p. 235107, Dec. 2010.
  86. A. Andryieuski, C. Menzel, C. Rockstuhl, R. Malureanu, and A. V. Lavrinenko, "The split cube in a cage: bulk negative-index material for infrared applications," Journal of Optics A: Pure and Applied Optics, vol. 11, no. 11, p. 114010, Nov. 2009.
  87. A. K. Iyer and G. V. Eleftheriades, "A three-dimensional isotropic transmission-line metamaterial topology for free-space excitation," Applied Physics Letters, vol. 92, no. 26, p. 261106, 2008.
  88. C. Caloz and T. Itoh, Electromagnetic metamaterials: transmission line theory and microwave applications: the engineering approach. Wiley-IEEE Press, 2006.
  89. T. Koschny, L. Zhang, and C. Soukoulis, "Isotropic three-dimensional left-handed metamaterials," Physical Review B, vol. 71, no. 12, p. 121103, Mar. 2005.
  90. V. Yannopapas and A. Moroz, "Negative refractive index metamaterials from inherently non- magnetic materials for deep infrared to terahertz frequency ranges.," Journal of physics: Condensed matter, vol. 17, no. 25, pp. 3717-34, Jun. 2005.
  91. I. Vendik, O. Vendik, and M. Odit, "Isotropic artificial media with simulateneously negative permittivity and permeability," Microwave and Optical Technology Letters, vol. 48, no. 12, pp. 2553- 2556, 2006.
  92. A.-G. Kussow, A. Akyurtlu, and N. Angkawisittpan, "Optically isotropic negative index of refraction metamaterial," Physica Status Solidi (B), vol. 245, no. 5, pp. 992-997, May 2008.
  93. A. Alù and N. Engheta, "Three-dimensional nanotransmission lines at optical frequencies: A recipe for broadband negative-refraction optical metamaterials," Physical Review B, vol. 75, no. 2, p. 024304, Jan. 2007.
  94. C. Menzel et al., "High symmetry versus optical isotropy of a negative-index metamaterial," Physical Review B, vol. 81, no. 19, p. 195123, May 2010.
  95. Y. Sivan, S. Xiao, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, "Frequency-domain simulations of a negative-index material with embedded gain," Optics Express, vol. 17, no. 26, pp. 24060-24074, 2009.
  96. A. N. Lagarkov and A. K. Sarychev, "Loss and gain in metamaterials," Journal of the Optical Society of America B, vol. 27, no. 4, p. 648, Mar. 2010.
  97. A. Fang, T. Koschny, M. Wegener, and C. Soukoulis, "Self-consistent calculation of metamaterials with gain," Physical Review B, vol. 79, no. 24, p. 241104, Jun. 2009.
  98. A. Boltasseva and H. a Atwater, "Materials science. Low-loss plasmonic metamaterials.," Science (New York, N.Y.), vol. 331, no. 6015, pp. 290-1, Jan. 2011.
  99. P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and a. Boltasseva, "Searching for better plasmonic materials," Laser & Photonics Reviews, vol. 4, no. 6, pp. 795-808, Nov. 2010.
  100. X.-X. Liu and A. Alù, "Limitations and potentials of metamaterial lenses," Journal of Nanophotonics, vol. 5, no. 1, p. 053509, 2011.
  101. M. Notomi, "Theory of light propagation in strongly modulated photonic crystals: Refractionlike behavior in the vicinity of the photonic band gap," Physical Review B, vol. 62, no. 16, pp. 10696- 10705, Oct. 2000.
  102. P. Belov, C. Simovski, and P. Ikonen, "Canalization of subwavelength images by electromagnetic crystals," Physical Review B, vol. 71, no. 19, p. 193105, May 2005.
  103. W. Smigaj, B. Gralak, R. Pierre, and G. Tayeb, "Antireflection gratings for a photonic-crystal flat lens.," Optics Letters, vol. 34, no. 22, pp. 3532-4, Nov. 2009.
  104. B. D. F. Casse et al., "Imaging with subwavelength resolution by a generalized superlens at infrared wavelengths.," Optics Letters, vol. 34, no. 13, pp. 1994-6, Jul. 2009.
  105. M. Hofman, N. Fabre, X. Mélique, D. Lippens, and O. Vanbésien, "Defect assisted subwavelength resolution in III-V semiconductor photonic crystal flat lenses with n=-1," Optics Communications, vol. 283, no. 6, pp. 1169-1173, Mar. 2010.
  106. D. Smith and D. Schurig, "Electromagnetic Wave Propagation in Media with Indefinite Permittivity and Permeability Tensors," Physical Review Letters, vol. 90, no. 7, pp. 5-8, Feb. 2003.
  107. D. R. Smith, P. Kolinko, and D. Schurig, "Negative refraction in indefinite media," Journal of the Optical Society of America B, vol. 21, no. 5, p. 1032, 2004.
  108. Z. Jacob, L. V. Alekseyev, and E. Narimanov, "Semiclassical theory of the hyperlens.," Journal of the Optical Society of America. A, vol. 24, no. 10, pp. A52-9, Oct. 2007.
  109. M. Silveirinha, P. Belov, and C. Simovski, "Subwavelength imaging at infrared frequencies using an array of metallic nanorods," Physical Review B, vol. 75, no. 3, p. 035108, Jan. 2007.
  110. J. Elser, R. Wangberg, V. a. Podolskiy, and E. E. Narimanov, "Nanowire metamaterials with extreme optical anisotropy," Applied Physics Letters, vol. 89, no. 26, p. 261102, 2006.
  111. P. A. Belov, P. Ikonen, C. R. Simovski, Y. Hao, and S. A. Tretyakov, "Magnification of subwavelength field distributions using a tapered array of wires operating in the canalization regime," Antennas and Propagation Society International Symposium, pp. 8-11, 2008.
  112. Y. Zhao, P. Belov, and Y. Hao, "Subwavelength internal imaging by means of a wire medium," Journal of Optics A: Pure and Applied Optics, vol. 11, no. 7, p. 075101, Jul. 2009.
  113. P. Belov, Y. Hao, and S. Sudhakaran, "Subwavelength microwave imaging using an array of parallel conducting wires as a lens," Physical Review B, vol. 73, no. 3, p. 033108, Jan. 2006.
  114. A. Fang, T. Koschny, and C. Soukoulis, "Optical anisotropic metamaterials: Negative refraction and focusing," Physical Review B, vol. 79, no. 24, p. 245127, Jun. 2009.
  115. S. Kawata, A. Ono, and P. Verma, "Subwavelength colour imaging with a metallic nanolens," Nature Photonics, vol. 2, no. 7, pp. 438-442, Jun. 2008.
  116. J. Yao et al., "Imaging visible light using anisotropic metamaterial slab lens.," Optics Express, vol. 17, no. 25, pp. 22380-5, Dec. 2009.
  117. B. D. F. Casse, W. T. Lu, Y. J. Huang, E. Gultepe, L. Menon, and S. Sridhar, "Super-resolution imaging using a three-dimensional metamaterials nanolens," Applied Physics Letters, vol. 96, no. 2, p. 023114, 2010.
  118. Z. Jacob, L. V. Alekseyev, and E. Narimanov, "Optical Hyperlens: Far-field imaging beyond the diffraction limit.," Optics Express, vol. 14, no. 18, pp. 8247-56, Sep. 2006.
  119. C. Jeppesen, R. B. Nielsen, A. Boltasseva, S. Xiao, N. A. Mortensen, and A. Kristensen, "Thin film Ag superlens towards lab-on-a-chip integration.," Optics Express, vol. 17, no. 25, pp. 22543-52, Dec. 2009.
  120. Y. Xiong, Z. Liu, and X. Zhang, "A simple design of flat hyperlens for lithography and imaging with half-pitch resolution down to 20 nm," Applied Physics Letters, vol. 94, no. 20, p. 203108, 2009.
  121. Q. Meng et al., "Deep subwavelength focusing of light by a trumpet hyperlens," Journal of Optics, vol. 13, no. 7, p. 075102, Jul. 2011.
  122. J. Kerbst et al., "Enhanced transmission in rolled-up hyperlenses utilizing Fabry-Pérot resonances," Applied Physics Letters, vol. 99, no. 19, p. 191905, 2011.
  123. P. Bharadwaj, B. Deutsch, and L. Novotny, "Optical Antennas," Advances, pp. 438-483, 2009.
  124. C. A. Balanis, Antenna theory. Wiley New York, 1997.
  125. A. Alù and N. Engheta, "Input impedance, nanocircuit loading, and radiation tuning of optical nanoantennas," Physical review letters, vol. 101, no. 4, p. 043901, 2008.
  126. K. B. Crozier, a. Sundaramurthy, G. S. Kino, and C. F. Quate, "Optical antennas: Resonators for local field enhancement," Journal of Applied Physics, vol. 94, no. 7, p. 4632, 2003.
  127. R. M. Bakker et al., "Near-field excitation of nanoantenna resonance," Optics Express, vol. 15, no. 21, pp. 13682-13688, 2007.
  128. L. Novotny, "Effective Wavelength Scaling for Optical Antennas," Physical Review Letters, vol. 98, no. June, p. 226802, 2007.
  129. Z. Fang, L. Fan, C. Lin, D. Zhang, A. J. Meixner, and X. Zhu, "Plasmonic coupling of bow tie antennas with Ag nanowire," Nano letters, 2011.
  130. C. E. Talley et al., "Surface-Enhanced Raman Scattering from Individual Au Nanoparticles and Nanoparticle Dimer Substrates," Nano Letters, vol. 5, no. 8, pp. 1569-1574, 2005.
  131. J. J. Greffet, "Nanoantennas for Light Emission," Science, vol. 308, no. June, 2005.
  132. M. Schnell, A. Garcia-Etxarri, A. J. Huber, K. Crozier, J. Aizpurua, and R. Hillenbrand, "Controlling the near-field oscillations of loaded plasmonic nanoantennas," Nature Photonics, vol. 3, no. April, pp. 287-291, 2009.
  133. J. a Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, "Plasmonics for extreme light concentration and manipulation.," Nature materials, vol. 9, no. 3, pp. 193-204, Mar. 2010.
  134. L. Novotny and N. van Hulst, "Antennas for light," Nature Photonics, vol. 5, no. 2, pp. 83-90, Feb. 2011.
  135. M. Klemm, "Novel Directional Nanoantennas for Single-Emitter Sources and Wireless Nano-Links," International Journal of Optics, vol. 2012, pp. 1-7, 2012.
  136. Q.-han Park, "Optical antennas and plasmonics Optical antennas and plasmonics," Contemporary Physics, vol. 50, no. 2, pp. 407-423, 2009.
  137. E. Cubukcu and F. Capasso, "Optical nanorod antennas as dispersive one-dimensional Fabry -Pérot resonators for surface plasmons," Applied Physics Letters, vol. 95, p. 201101, 2009.
  138. P. Mühlschlegel, H. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, "Resonant Optical Antennas," Science, vol. 1607, no. 2005, pp. 1607-9, 2007.
  139. P. Biagioni and B. Hecht, "Nanoantennas for visible and infrared radiation," Arxiv preprint arXiv:1103.1568, 2011.
  140. J. Wen, S. Romanov, and U. Peschel, "Excitation of plasmonic gap waveguides by nanoantennas," Optics Express, vol. 17, no. 8, pp. 5925-5932, 2009.
  141. J. Huang, T. Feichtner, P. Biagioni, and B. Hecht, "Impedance matching and emission properties of nanoantennas in an optical nanocircuit," Nano Letters, vol. 9, no. 5, pp. 1897-1902, 2009.
  142. Z. Fang, Y. Lu, L. Fan, and C. Lin, "Surface Plasmon Polariton Enhancement in Silver Nanowire - Nanoantenna Structure," Plasmonics, vol. 5, pp. 57-62, 2010.
  143. Z. Fang, L. Fan, C. Lin, D. Zhang, A. J. Meixner, and X. Zhu, "Plasmonic Coupling of Bow Tie Antennas with Ag Nanowire," Nano, vol. 11, pp. 1676-1680, 2011.
  144. J. Wen, P. Banzer, A. Kriesch, D. Ploss, B. Schmauss, and U. Peschel, "Experimental cross- polarization detection of coupling far-field light to highly confined plasmonic gap modes via nanoantennas," Applied Physics Letters, vol. 98, p. 101109, 2011.
  145. A. Andryieuski, R. Malureanu, G. Biagi, T. Holmgaard, and A. Lavrinenko, "Compact dipole nanoantenna coupler to plasmonic slot waveguide.," Optics Letters, vol. 37, no. 6, pp. 1124-6, Mar. 2012.
  146. A. Alu and N. Engheta, "Wireless at the Nanoscale: Optical Interconnects using Matched Nanoantennas," Physical Review Letters, vol. 104, no. May, p. 213902, 2010.
  147. Z. Xiao, F. Luan, T.-Y. Liow, J. Zhang, and P. Shum, "Design for broadband high-efficiency grating couplers.," Optics letters, vol. 37, no. 4, pp. 530-2, Feb. 2012.
  148. D. Vermeulen et al., "High-efficiency fiber-to-chip grating couplers realized using an advanced CMOS-compatible silicon-on-insulator platform.," Optics Express, vol. 18, no. 17, pp. 18278-18283, Aug. 2010.
  149. L. Zhu, V. Karagodsky, and C. Chang-Hasnain, "Novel high efficiency vertical to in-plane optical coupler," Proceedings of SPIE, vol. 8270, no. May, p. 82700L-82700L-11, 2012.
  150. Z. Cheng et al., "Focusing subwavelength grating coupler for mid-infrared suspended membrane waveguide.," Optics letters, vol. 37, no. 7, pp. 1217-9, Apr. 2012.
  151. J. Andkjaer, S. Nishiwaki, T. Nomura, and O. Sigmund, "Topology optimization of grating couplers for the efficient excitation of surface plasmons," JOSA B, vol. 27, no. 9, pp. 1828-1832, 2010.
  152. M. W. Maqsood, R. Mehfuz, and K. J. Chau, "surface-plasmon-polariton coupling by a super- wavelength slit," Optics Express, vol. 18, no. 21, pp. 967-971, 2010.
  153. E. Verhagen, A. Polman, and L. K. Kuipers, "Nanofocusing in laterally tapered plasmonic waveguides.," Optics Express, vol. 16, no. 1, pp. 45-57, Jan. 2008.
  154. X. Chen and H. K. Tsang, "Polarization-independent grating couplers for silicon-on-insulator nanophotonic waveguides," Optics Letters, vol. 36, no. 6, pp. 796-798, 2011.
  155. N. Talebi, M. Shahabadi, W. Khunsin, and R. Vogelgesang, "Plasmonic grating as a nonlinear converter-coupler.," Optics express, vol. 20, no. 2, pp. 1392-405, Jan. 2012.
  156. I. M. Vellekoop, A. Lagendijk, and A. P. Mosk, "Exploiting disorder for perfect focusing," Nature Photonics, vol. 4, no. February, pp. 320-322, 2010.
  157. C. Balanis, "Antenna theory: analysis and design," 2005.
  158. A. J. Ward and J. B. Pendry, "Refraction and geometry in Maxwell's equations," Journal of Modern Optics, vol. 43, pp. 773-792, 1996.
  159. D. Shyroki, "Note on transformation to general curvilinear space," Arxiv preprint arXiv: 0307029, 2003.
  160. U. Leonhardt and T. G. Philbin, "Transformation Optics and the Geometryy of Light," Progress in Optics, vol. 53, no. 08, pp. 69-152, 2009.
  161. J. B. Pendry, D. Schurig, and D. R. Smith, "Controlling electromagnetic fields.," Science, vol. 312, no. 5781, pp. 1780-2, Jun. 2006.
  162. J. Zhang, Y. Luo, and N. A. Mortensen, "Transmission of electromagnetic waves through sub- wavelength channels.," Optics Express, vol. 18, no. 4, pp. 3864-70, Feb. 2010.
  163. A. V. Kildishev and V. M. Shalaev, "Engineering space for light via transformation optics," Optics Letters, vol. 33, no. 1, pp. 43-45, 2008.
  164. E. E. Narimanov and A. V. Kildishev, "Optical black hole: Broadband omnidirectional light absorber," Applied Physics Letters, vol. 95, no. 4, p. 041106, 2009.
  165. M. P. Bendsøe and O. Sigmund, Topology optimization: theory, methods, and applications. Springer Verlag, 2003.
  166. J. S. Jensen and O. Sigmund, "Topology optimization for nano-photonics," Laser & Photonics Reviews, vol. 5, no. 2, pp. 308-321, Mar. 2011.
  167. M. Pu et al., "Topology-Optimized Slow-Light Couplers for Ring-shaped Photonic Crystal Waveguide," in 2010 Conference on Optical Fiber Communication, 2010, vol. 1, no. d, p. JWA30.
  168. R. Salgueiro and Y. S. Kivshar, "Nonlinear couplers with tapered plasmonic waveguides," Optics Express, vol. 20, no. 9, pp. 187-189, 2012.