Academia.eduAcademia.edu

Outline

Interpretable knowledge discovery from data with DC*

https://doi.org/10.2991/IFSA-EUSFLAT-15.2015.115

Abstract

We present DC* (Double Clustering with A*) as an information granulation method specifically suited for deriving interpretable knowledge from data. DC* is based on two main clustering stages: the first is devoted to compressing multi-dimensional data into few prototypes that grab the main relationships among data; the second is aimed at finding a proper fuzzy granulation of each input feature so that the relations among data can be linguistically described in terms of fuzzy classification rules. We applied DC* as a stage in a knowledge discovery process, aimed at finding interpretable diagnostic rules for sleep-related breathing disorders.

References (15)

  1. O. Maimon and L. Rokach. Introduction to knowledge discovery and data mining. In O. Maimon and L. Rokach, editors, Data Min- ing and Knowledge Discovery Handbook, pages 1-15. Springer US, 2010.
  2. J. M. Alonso, C. Castiello, and C. Mencar. Interpretability of fuzzy systems: Current re- search trends and prospects. In J. Kacprzyk and W. Pedrycz, editors, Springer Handbook of Computational Intelligence. Springer, 2015.
  3. L. J. West. Perception. Entry of Encyclopaedia Britannica Online, 2015.
  4. L. Zadeh. Toward a theory of fuzzy information granulation and its centrality in human reason- ing and fuzzy logic. Fuzzy Sets and Systems, 90(2):111-127, 9 1997.
  5. C. Mencar and A. M. Fanelli. Interpretabil- ity constraints for fuzzy information granula- tion. Information Sciences, 178(24):4585-4618, 2008.
  6. M. Zeinalkhani and M. Eftekhari. Fuzzy par- titioning of continuous attributes through dis- cretization methods to construct fuzzy decision tree classifiers. Information Sciences, 278:715- 735, 9 2014.
  7. M. Lucarelli and C. Mencar. A new heuristic function for DC*. In Fuzzy Logic and Appli- cations (10th International Workshop, WILF 2013), Lecture Notes in Artficial Intelligence, pages 44-51, 2013.
  8. T. Kohonen. Self-Organizing Maps, volume 30 of Springer Series in Information Sciences. Springer-Verlag, 2001.
  9. S. Edelkamp and S. Schrödl. Heuristic Search: Theory and Applications. Morgan Kaufmann, 2012.
  10. C. Mencar, M. Lucarelli, C. Castiello, and F. Anna Maria. Design of strong fuzzy par- titions from cuts. In Proceedings of the 8th conference of the European Society for Fuzzy Logic and Technology, Advances in Intelligent Systems Research, pages 424-431, 2013.
  11. V. Tsara, A. Amfilochiou, M. J. Papagrigo- rakis, D. Georgopoulos, and E. Liolios. Guide- lines for diagnosis and treatment of sleep- related breathing disorders in adults and chil- dren. Definition and classification of sleep re- lated breathing disorders in adults: different types and indications for sleep studies (part 1). Hippokratia, 13(3):187-91, 7 2009.
  12. D. Lacedonia, G. E. Carpagnano, M. Aliani, R. Sabato, M. P. Foschino Barbaro, A. Span- evello, M. Carone, and F. Fanfulla. Daytime PaO2 in OSAS, COPD and the combination of the two (overlap syndrome). Respiratory medicine, 107(2):310-6, 3 2013.
  13. D. Lacedonia, R. Tamisier, F. Roche, D. Mon- neret, J. P. Baguet, P. Lévy, and J. L. Pépin. Respective effects of osa treatment and an- giotensin receptor blocker on aldosterone in hy- pertensive osa patients: a randomized cross- over controlled trial. International journal of cardiology, 177(2):629-31, 12 2014.
  14. N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer. Smote: Synthetic minority over-sampling technique. Journal of Artificial Intelligence Research, 16:321-357, 2002.
  15. S. Guillaume and B. Charnomordic. Learning interpretable fuzzy inference systems with fis- pro. Information Sciences, 181(20):4409-4427, 10 2011.