Academia.eduAcademia.edu

Outline

Score Bounded Monte-Carlo Tree Search

2011, Lecture Notes in Computer Science

https://doi.org/10.1007/978-3-642-17928-0_9

Abstract

Monte-Carlo Tree Search (MCTS) is a successful algorithm used in many state of the art game engines. We propose to improve a MCTS solver when a game has more than two outcomes. It is for example the case in games that can end in draw positions. In this case it improves significantly a MCTS solver to take into account bounds on the possible scores of a node in order to select the nodes to explore. We apply our algorithm to solving Seki in the game of Go and to Connect Four.

References (19)

  1. L. Victor Allis. A knowledge-based approach of connect-four the game is solved: White wins. Masters thesis, Vrije Universitat Amsterdam, Amsterdam, The Netherlands, October 1988.
  2. Hans J. Berliner. The B * tree search algorithm: A best-first proof procedure. Artif. Intell., 12(1):23-40, 1979.
  3. Tristan Cazenave. A Phantom-Go program. In Advances in Computer Games 2005, volume 4250 of Lecture Notes in Computer Science, pages 120-125. Springer, 2006.
  4. Tristan Cazenave. Reflexive monte-carlo search. In Computer Games Workshop, pages 165- 173, Amsterdam, The Netherlands, 2007.
  5. Tristan Cazenave. Nested monte-carlo search. In IJCAI, pages 456-461, 2009.
  6. Guillaume Chaslot, L. Chatriot, C. Fiter, Sylvain Gelly, Jean-Baptiste Hoock, J. Perez, Arpad Rimmel, and Olivier Teytaud. Combiner connaissances expertes, hors-ligne, transientes et en ligne pour l'exploration Monte-Carlo. Apprentissage et MC. Revue d'Intelligence Artifi- cielle, 23(2-3):203-220, 2009.
  7. Rémi Coulom. Efficient selectivity and back-up operators in monte-carlo tree search. In Computers and Games 2006, Volume 4630 of LNCS, pages 72-83, Torino, Italy, 2006. Springer.
  8. Rémi Coulom. Computing Elo ratings of move patterns in the game of Go. ICGA Journal, 30(4):198-208, December 2007.
  9. Hilmar Finnsson and Yngvi Björnsson. Simulation-based approach to general game playing. In AAAI, pages 259-264, 2008.
  10. Sylvain Gelly and David Silver. Combining online and offline knowledge in UCT. In ICML, pages 273-280, 2007.
  11. Sylvain Gelly and David Silver. Achieving master level play in 9 x 9 computer go. In AAAI, pages 1537-1540, 2008.
  12. P. Hart, N. Nilsson, and B. Raphael. A formal basis for the heuristic determination of mini- mum cost paths. IEEE Trans. Syst. Sci. Cybernet., 4(2):100-107, 1968.
  13. L. Kocsis and C. Szepesvàri. Bandit based monte-carlo planning. In ECML, volume 4212 of Lecture Notes in Computer Science, pages 282-293. Springer, 2006.
  14. Tomáš Kozelek. Methods of MCTS and the game Arimaa. Master's thesis, Charles Univer- sity in Prague, 2009.
  15. Richard J. Lorentz. Amazons discover monte-carlo. In Computers and Games, pages 13-24, 2008.
  16. Xiaozhen Niu, Akihiro Kishimoto, and Martin Müller. Recognizing seki in computer go. In ACG, pages 88-103, 2006.
  17. Maarten P. D. Schadd, Mark H. M. Winands, H. Jaap van den Herik, Guillaume Chaslot, and Jos W. H. M. Uiterwijk. Single-player monte-carlo tree search. In Computers and Games, pages 1-12, 2008.
  18. Mark H. M. Winands and Yngvi Björnsson. Evaluation function based Monte-Carlo LOA. In Advances in Computer Games, 2009.
  19. Mark H. M. Winands, Yngvi Björnsson, and Jahn-Takeshi Saito. Monte-carlo tree search solver. In Computers and Games, pages 25-36, 2008.