Score Bounded Monte-Carlo Tree Search
2011, Lecture Notes in Computer Science
https://doi.org/10.1007/978-3-642-17928-0_9Abstract
Monte-Carlo Tree Search (MCTS) is a successful algorithm used in many state of the art game engines. We propose to improve a MCTS solver when a game has more than two outcomes. It is for example the case in games that can end in draw positions. In this case it improves significantly a MCTS solver to take into account bounds on the possible scores of a node in order to select the nodes to explore. We apply our algorithm to solving Seki in the game of Go and to Connect Four.
References (19)
- L. Victor Allis. A knowledge-based approach of connect-four the game is solved: White wins. Masters thesis, Vrije Universitat Amsterdam, Amsterdam, The Netherlands, October 1988.
- Hans J. Berliner. The B * tree search algorithm: A best-first proof procedure. Artif. Intell., 12(1):23-40, 1979.
- Tristan Cazenave. A Phantom-Go program. In Advances in Computer Games 2005, volume 4250 of Lecture Notes in Computer Science, pages 120-125. Springer, 2006.
- Tristan Cazenave. Reflexive monte-carlo search. In Computer Games Workshop, pages 165- 173, Amsterdam, The Netherlands, 2007.
- Tristan Cazenave. Nested monte-carlo search. In IJCAI, pages 456-461, 2009.
- Guillaume Chaslot, L. Chatriot, C. Fiter, Sylvain Gelly, Jean-Baptiste Hoock, J. Perez, Arpad Rimmel, and Olivier Teytaud. Combiner connaissances expertes, hors-ligne, transientes et en ligne pour l'exploration Monte-Carlo. Apprentissage et MC. Revue d'Intelligence Artifi- cielle, 23(2-3):203-220, 2009.
- Rémi Coulom. Efficient selectivity and back-up operators in monte-carlo tree search. In Computers and Games 2006, Volume 4630 of LNCS, pages 72-83, Torino, Italy, 2006. Springer.
- Rémi Coulom. Computing Elo ratings of move patterns in the game of Go. ICGA Journal, 30(4):198-208, December 2007.
- Hilmar Finnsson and Yngvi Björnsson. Simulation-based approach to general game playing. In AAAI, pages 259-264, 2008.
- Sylvain Gelly and David Silver. Combining online and offline knowledge in UCT. In ICML, pages 273-280, 2007.
- Sylvain Gelly and David Silver. Achieving master level play in 9 x 9 computer go. In AAAI, pages 1537-1540, 2008.
- P. Hart, N. Nilsson, and B. Raphael. A formal basis for the heuristic determination of mini- mum cost paths. IEEE Trans. Syst. Sci. Cybernet., 4(2):100-107, 1968.
- L. Kocsis and C. Szepesvàri. Bandit based monte-carlo planning. In ECML, volume 4212 of Lecture Notes in Computer Science, pages 282-293. Springer, 2006.
- Tomáš Kozelek. Methods of MCTS and the game Arimaa. Master's thesis, Charles Univer- sity in Prague, 2009.
- Richard J. Lorentz. Amazons discover monte-carlo. In Computers and Games, pages 13-24, 2008.
- Xiaozhen Niu, Akihiro Kishimoto, and Martin Müller. Recognizing seki in computer go. In ACG, pages 88-103, 2006.
- Maarten P. D. Schadd, Mark H. M. Winands, H. Jaap van den Herik, Guillaume Chaslot, and Jos W. H. M. Uiterwijk. Single-player monte-carlo tree search. In Computers and Games, pages 1-12, 2008.
- Mark H. M. Winands and Yngvi Björnsson. Evaluation function based Monte-Carlo LOA. In Advances in Computer Games, 2009.
- Mark H. M. Winands, Yngvi Björnsson, and Jahn-Takeshi Saito. Monte-carlo tree search solver. In Computers and Games, pages 25-36, 2008.