Fundamental properties of Tsallis relative entropy
2004, Journal of Mathematical Physics
https://doi.org/10.1063/1.1805729Abstract
Fundamental properties for the Tsallis relative entropy in both classical and quantum systems are studied. As one of our main results, we give the parametric extension of the trace inequality between the quantum relative entropy and the minus of the trace of the relative operator entropy given by Hiai and Petz. The monotonicity of the quantum Tsallis relative entropy for the trace preserving completely positive linear map is also shown without the assumption that the density operators are invertible. The generalized Tsallis relative entropy is defined and its subadditivity is shown by its joint convexity. Moreover, the generalized Peierls-Bogoliubov inequality is also proven.
References (34)
- S.Abe, Nonadditive generalization of the quantum Kullback-Leibler divergence for measuring the degree of purification, quant-ph/0301136.
- S Abe,Monotonic decrease of the quantum nonadditive divergence by projective measurements, Phys. Lett. A, Vol.312, pp. 336-338 (2003), and its Corrigendum, Vol.324,pp.507(2004).
- S.Abe and A.K.Rajagopal, Validity of the second law in nonextensive quantum ther- modynamics, Phys.Rev.Lett.,Vol.91,No.12,120601(2003).
- J.Aczél and Z.Daróczy, On measures of information and their characterizations, Aca- demic Press, 1975.
- T.Ando, Topics on operator inequality, Lecture Notes, Hokkaido Univ.,Sapporo,1978.
- N.Bebiano,J.da Providencia Jr. and R.Lemos, Matrix inequalities in statistical me- chanics, Linear Algebra and its Applications, Vol.376,pp.265-273(2004).
- L.Borland, A.R.Plastino and C.Tsallis, Information gain within nonexten- sive thermostatistics,J.Math.Phys,Vol.39,pp.6490-6501(1998), and its Erratum, Vol.40,pp.2196(1999).
- M.-D.Choi, Completely positive linear maps on complex matrices, Linear Algebra and its Applications, Vol.10,pp.285-290(1975).
- T.M.Cover and J.A.Thomas, Elements of Information Theory, John Wiley and Sons, 1991.
- I.Csiszár, Infromation type measures of difference of probability distribution and indirect observations, Studia Scientiarum Mathematicarum Hungarica, Vol.2,pp.299- 318(1967).
- Z.Daróczy, General information functions, Information and Control, Vol.16,pp.36- 51(1970).
- J.I.Fujii and E.Kamei, Relative operator entropy in noncommutative information theory, Math. Japonica, Vol.34,pp.341-348(1989).
- T.Furuta, Invitation to Linear Operators: From Matrix to Bounded Linear Operators on a Hilbert Space, CRC Pr I Llc, 2002.
- T.Furuta, Parametric extensions of Shannon inequality and its reverse one in Hilbert space operators, Linear Algebra and its Applications, Vol.381,pp.219-235(2004).
- J.Havrda and F.Charvát, Quantification method of classification processes, Concept of structural a-entropy, Kybernetika(Prague), Vol.3, pp.30-35(1967).
- F.Hiai and D.Petz, The proper formula for relative entropy in asymptotics in quantum probability, Comm.Math.Phys.,Vol.143,pp.99-114(1991).
- F.Hiai and D.Petz, The Golden-Thompson trace inequality is complemented, Linear Algebra and its Applications, Vol.181,pp.153-185(1993).
- K.Huang, Statistical Mechanics, John Wiley and Sons, 1987.
- K.Kraus, State, Effects and Operations: Fundamental Notations of Quantum Theory, Springer, 1983.
- G.Lindblad, Completely positive maps and entropy inequalities, Comm.Math.Phys.,Vol.40,pp.147-151(1975).
- M.A.Nielsen and I.Chuang, Quantum Computation and Quantum Information, Cam- bridge Press,2000.
- M.Ohya and D.Petz, Quantum Entropy and its Use,Springer-Verlag,1993.
- D.Petz, Quasi-entropies for finite quantum system, Rep.Math.Phys.,Vol.23,pp.57- 65(1986).
- A.K.Rajagopal and S.Abe,Implications of form invariance to the structure of nonex- tensive entropies, Phys. Rev. Lett., Vol.83, pp.1711-1714(1999).
- M.B.Ruskai, Inequalities for quantum entropy: a review with condition for equality, J.Math.Phys.,Vol.43,pp.4358-4375(2002).
- M.B.Ruskai and F.M.Stillinger, Convexity inequalities for estimating free energy and relative entropy, J.Phys.A,Vol.23,pp.2421-2437(1990).
- B.Schumacher, Sending entanglement through noisy quantum channel, Phys.Rev.A,Vol.54,pp.2614-2628(1996).
- M.Shiino, H-theorem with generalized relative entropies and the Tsallis statistics, J.Phys.Soc.Japan,Vol.67,pp.3658-3660(1998).
- C.Tsallis, Generalized entropy-based criterion for consistent testing, Phys.Rev.E,Vol.58,pp.1442-1445(1998).
- C.Tsallis, Possible generalization of Bolzmann-Gibbs statistics, J.Stat.Phys.,Vol.52,pp.479-487(1988).
- C. Tsallis et al., Nonextensive Statistical Mechanics and Its Applications, edited by S. Abe and Y. Okamoto (Springer-Verlag, Heidelberg, 2001); see also the comprehensive list of references at http://tsallis.cat.cbpf.br/biblio.htm.
- H.Umegaki, Conditional expectation in an operator algebra, IV (entropy and infor- mation),Kodai Math.Sem.Rep., Vol.14,pp.59-85(1962).
- A.Wehrl, General properties of entropy, Rev.Mod.Phys.,Vol.50,pp.221-260(1978).
- K.Yanagi, K.Kuriyama and S.Furuichi, Generalized Shannon inequalities based on Tsallis relative operator entropy, to appear in Linear Algebra and its Applications.