Academia.eduAcademia.edu

Outline

Traveling waves of the spread of avian influenza

2012, Proceedings of the American Mathematical Society

References (10)

  1. S. Agmon, A. Douglis, L. Nirenberg, Estimates near the boundary for solutions of elliptic differential equations satisfying general boundary conditions. I, Comm. Pure Appl. Math. 12 (1959), 623-727. MR0125307 (23:A2610)
  2. S. Agmon, A. Douglis, L. Nirenberg, Estimates near the boundary for solutions of elliptic differential equations satisfying general boundary conditions. II, Comm. Pure Appl. Math. 17 (1964), 35-92. MR0162050 (28:5252)
  3. A. Berman, M. Neumann, Ronald J. Stern, Nonnegative matrices in dynamic systems, John Wiley & Sons, New York, 1989. MR1019319 (90j:93030)
  4. A. Ducrot, P. Magal, Travelling wave solutions for an infection-age structured model with diffusion, Proc. Royal Soc. Edinburgh (A) 139 (2009), 459-482. MR2506782 (2010f:35417)
  5. A. Ducrot, P. Magal, S. Ruan, Travelling wave solutions in multigroup age-structured epidemic models, Arch. Rational Mech. Anal. 195 (2010), 311-331. MR2564476
  6. D. Gilbarg, N.S. Trudinger, Elliptic partial differential equations of second order, Springer, Berlin, 2001. MR1814364 (2001k:35004)
  7. M. Hirsch, H. Hanish, J.-P. Gabriel, Differential equation model of some parasitic infections: Methods for the study of asymptotic behavior, Comm. Pure Appl. Math. 38 (1985), 733-753. MR812345 (87f:92015)
  8. Y. Hosono, B. Ilyas, Traveling waves for a simple diffusive epidemic model, Math. Models Methods Appl. Sci. 5 (1995), 935-966. MR1359215 (96j:35248)
  9. R. Liu, V.R.S.K. Duvvuri, J. Wu, Spread pattern formation of H5N1-avian influenza and its implications for control strategies, Math. Model. Nat. Phenom. 3(7) (2008), 161-179. MR2460260 (2009j:92059)
  10. Z.C. Wang, J. Wu, Traveling waves of a diffusive Kermack-McKendrick epidemic model with non-local delayed transmission, Proc. R. Soc. London Ser. A 466 (2010), 237-261. MR2564926 (2011b:92072)