Academia.eduAcademia.edu

Outline

Dispersive waves in microstructured solids

2013, International Journal of Solids and Structures

https://doi.org/10.1016/J.IJSOLSTR.2013.02.018

Abstract

The wave motion in micromorphic microstructured solids is studied. The mathematical model is based on ideas of Mindlin and governing equations are derived by making use of the Euler-Lagrange formalism. The same result is obtained by means of the internal variables approach. Actually such a model describes internal fields in microstructured solids under external loading and the interaction of these fields results in various physical effects. The emphasis of the paper is on dispersion analysis and wave profiles generated by initial or boundary conditions in a one-dimensional case.

References (46)

  1. Andrianov, I.V., Awrejcewicz, J., Weichert, D., 2010. Improved continuous models for discrete media. Math. Probl. Eng., 35 pp (Article ID 986242).
  2. Askes, H., Metrikine, A.V., Pichugin, A.V., Bennett, T., 2008. Four simplified gradient elasticity models for the simulation of dispersive wave propagation. Philos. 88, 3415-3443.
  3. Berezovski, A., Engelbrecht, J., Berezovski, M., 2011. Waves in microstructured solids: a unified viewpoint of modeling. Acta Mech. 220, 349-363.
  4. Berezovski, A., Engelbrecht, J., Maugin, G.A., 2009. One-dimensional microstructure dynamics. In: Ganghoffer, J.-F., Pastrone, F. (Eds.), Mechanics of Microstructured Solids: Cellular Materials, Fibre Reinforced Solids and Soft Tissues, Lecture Notes in Applied and Computational Mechanics, vol. 46. Springer, pp. 21-28.
  5. Berezovski, A., Engelbrecht, J., Maugin, G.A., 2011. Generalized thermomechanics with dual internal variables. Arch. Appl. Mech. 81, 229-240.
  6. Berezovski, A., Engelbrecht, J., Peets, T., 2010. Multiscale modelling of microstructured solids. Mech. Res. Commun. 37, 531-534.
  7. Born, M., von Kármán, T., 1912. Über Schwingungen in Raumgittern. Phys. Z. 13, 297-309.
  8. Capriz, G., 1989. Continua with Microstructure. Springer, Heidelberg.
  9. Chen, W., Fish, J., 2001. A dispersive model for wave propagation in periodic heterogeneous media based on homogenization with multiple spatial and scales. J. Appl. Mech. Trans. ASME 68, 153-161.
  10. Chen, Y., Lee, J.D., Eskandarian, A., 2004. Atomistic viewpoint of the applicability of microcontinuum theories. Int. J. Solids Struct. 41, 2085-2097.
  11. Christov, C.I., Maugin, G.A., Porubov, A.V., 2007. On Boussinesq's paradigm in nonlinear wave propagation. C.R. Mec. 335, 521-535.
  12. Engelbrecht, J., 1983. Nonlinear Wave Processes of Deformation in Solids. Pitman, Boston.
  13. Engelbrecht, J., Berezovski, A., Pastrone, F., Braun, M., 2005. Waves in microstructured materials and dispersion. Philos. Mag. 85, 4127-4141.
  14. Engelbrecht, J., Pastrone, F., Braun, M., Berezovski, A., 2006. Hierarchies of waves in nonclassical materials. In: Delsanto, P.P. (Ed.), Universality of Nonclassical Nonlinearity: Applications to Non-Destructive Evaluations and Ultrasonics. Springer, Berlin, pp. 29-47.
  15. Engelbrecht, J., Salupere, A., Tamm, K., 2011. Waves in microstructured solids and the Boussinesq paradigm. Wave Motion 48, 717-726.
  16. Eringen, A.C., Suhubi, E.S., 1964. Nonlinear theory of simple microelastic solids I & II. Int. J. Eng. Sci. 2 (189-203), 389-404.
  17. Fish, J., Chen, W., Tang, Y., 2005. Generalized mathematical homogenization of atomistic media at finite temperatures. Int. J. Multiscale Comput. Eng. 3, 393- 413. Fish, J., Fan, R., 2008. Mathematical homogenization of nonperiodic heterogeneous media subjected to large deformation transient loading. Int. J. Numer. Methods Eng. 76, 1044-1064.
  18. Forest, S., 2009. Micromorphic approach for gradient elasticity, viscoplasticity and damage. ASCE J. Eng. Mech. 135, 117-131.
  19. Gonella, S., Greene, M.S., Liu, W.K., 2011. Characterization of heterogeneous solids via wave methods in computational microelasticity. J. Mech. Phys. Solids 59, 959-974.
  20. Huang, G.L., Sun, C.T., 2008. A higher-order continuum model for elastic media with multiphased microstructure. Mech. Adv. Mater. Struct. 15, 550-557.
  21. Janno, J., Engelbrecht, J., 2011. Microstructured Materials: Inverse Problems. Springer, Berlin.
  22. Janno, J., Engelbrecht, J., 2005. Solitary waves in nonlinear microstructured materials. J. Phys. A: Math. Gen. 38, 5159-5172.
  23. Khusnutdinova, K.R., Samsonov, A.M., Zakharov, A.S., 2009. Nonlinear layered lattice model ans generalized solitary waves in imperfectly bonded structures. Phys. Rev. E 79, 056606.
  24. Maranganti, R., Sharma, P., 2007. A novel atomistic approach to determine strain- gradient elasticity constants: Tabulation and comparison for various metals, semiconductors, silica, polymers and the (Ir) relevance for nanotechnologies. J. Mech. Phys. Solids 55, 1823-1852.
  25. Mariano, P.M., 2008. Cracks in complex bodies: covariance of tip balances. J. Nonlinear Sci. 18, 99-141.
  26. Maugin, G.A., 1995. On some generalizations of Boussinesq and KdV systems. Proc. Est. Acad. Sci. Phys. Mat. 44, 40-55.
  27. Maugin, G.A., 2011. Configurational Forces: Thermomechanics, Physics, Mathematics, and Numerics. Chapman & Hall/CRC, Boca Raton, FL.
  28. Metrikine, A.V., 2006. On causality of the gradient elasticity models. J. Sound Vib. 297, 727-742.
  29. Metrikine, A.V., Askes, H., 2002. One-dimensional dynamically consistent gradient elasticity models derived from a discrete microstructure. Part 1: Generic formulation. Eur. J. Mech. A/Solids 21, 555-572.
  30. Mindlin, R.D., 1964. Micro-structure in linear elasticity. Arch. Rat. Mech. Anal. 16, 51-78.
  31. Papargyri-Beskou, S., Polyzos, D., Beskos, D.E., 2009. Wave dispersion in gradient elastic solids and structures: a unified treatment. Int. J. Solids Struct. 46, 3751- 3759.
  32. Pastrone, F., 2010. Hierarchy structures in complex solids with micro scales. Proc. Est. Acad. Sci. 59, 79-86.
  33. Peets, T., 2011. Dispersion analysis of wave motion in microstructured solids. Theses of Tallinn University of Technology B, Thesis on natural and exact sciences, TUT Press, Tallinn, 121 pp.
  34. Peets, T., Randrüüt, M., Engelbrecht, J., 2008. On modelling dispersion in microstructured solids. Wave Motion 45, 471-480.
  35. Porubov, A.V., 2003. Amplification of Nonlinear Strain Waves in Solids. World Scientific, Singapore.
  36. Randrüüt, M., Salupere, A., Engelbrecht, J., 2009. On modelling wave motion in microstructured solids. Proc. Est. Acad. Sci. 58, 241-246.
  37. Randrüüt, M., Braun, M., 2010. On one-dimensional solitary waves in microstructured solids. Wave Motion 47, 217-230.
  38. Salupere, A., Tamm, K., Engelbrecht, J., 2008. Numerical simulation of interaction of solitary deformation waves in microstructured solids. Int. J. Nonlinear Mech. 43, 201-208.
  39. Salupere, A., 2009. The pseudospectral method and discrete spectral analysis. In: Quak, E., Soomere, T. (Eds.), Applied Wave Mathematics: Selected Topics in Solids, Fluids, and Mathematical Methods. Springer, Heidelberg, pp. 301- 333.
  40. Santosa, F., Symes, W.W., 1991. A dispersive effective medium for wave propagation in periodic composites. SIAM J. Appl. Math. 51, 984-1005.
  41. Tamm, K., 2011. Wave propagation and interaction in Mindlin-type microstructured solids: numerical simulation. Theses of Tallinn University of Technology B, Thesis on natural and exact sciences, TUT Press, Tallinn, 183 pp.
  42. Ván, P., Berezovski, A., Engelbrecht, J., 2008. Internal variables and dynamic degrees of freedom. J. Non-Equilib. Thermodyn. 33, 235-254.
  43. Wang, X., Lee, J.D., 2010. Micromorphic theory: a gateway to nano world. Int. J. Smart Nano Mater. 1, 115-135.
  44. Wang, Z.-P., Sun, C.T., 2002. Modeling micro-inertia in heterogeneous materials under dynamic loading. Wave Motion 36, 473-485.
  45. Whitham, G.B., 1974. Linear and Nonlinear Waves. Wiley, New York.
  46. Zeng, X., Chen, Y., Lee, J.D., 2006. Determining material constants in nonlocal micromorphic theory through phonon dispersion relations. Int. J. Eng. Sci. 44, 1334-1345.