Academia.eduAcademia.edu

Outline

Finite Permutation Groups

1964, Elsevier eBooks

https://doi.org/10.1016/C2013-0-11702-3

Abstract

This thesis is concerned with the following two areas in the theory of finite permutation groups: A. transitive groups of degree p, where p -4q+1 and p,q are prime numbers, B. automorphism groups of 2-graphs and some related algebras. These two subjects will be referred to as Problem A and Problem B? we introduce them separately. Chapter 3 of this thesis consists of a proof of this theorem and some results needed for this proof are given in Chapter 1. In Chapter 2 we prove some general facts about 2-transitive and 3-transitive groups; most of these involve deductions about the way a group G acts on a set n. from information about the permutation characters *S ,^ of G associated with Jlw , JT. 1 respectively (where fl0"" and Jlf are the sets of ordered and unordered pairs of distinct elements ofjfL). The most important fact is: PROPOSITION 2.2. Suppose that G is generously 2-transitive and 2-priraitive of degree n on fl , and let k be the rank of G^ on _n_\{o<} (where o£ e .Q_). Then ||l|( -\\-q\\ ^ k 2+k-2; and if equality holds then either k = 2 or k = 3 and n is even. This fact is used in the proof of Theorem 3.1-The results in Chapter 2 on 3-transitive groups are used in Chapter 4 f where further study of transitive insoluble groups of degree p = 4q+1 is carried out. 'and go on till you come to the end: then stop. '"

References (42)

  1. for some set{vpL [i = 1,...,s] of q-exceptional characters of G, 2JLi// s
  2. for two different sets (^and {i^/} of q-exceptional characters, 3. for precisely one set {.^} of q-exceptional characters, 4. every constituent of 1 is q-rational. .REFERENCES.
  3. K.I.Appel and E.T.Parker, "On unsolvable groups of degree p = 4q+1, p and q primes", Can. J. Math. J^(1967), 58>-589.
  4. M.D.Atkinson, "Two theorems on doubly transitive permutation groups", J. London Math. See.(2), £(1973), 269-274-
  5. H.Bender, "Bndliche zweifach transitive Permutationsgruppen, deren Involutionen keine Fixpunkte haben", Math. Z. 121(1963), 175-204.
  6. « R.Brauer, "On groups whose order contains a prime number to the first power, I and II", Amer. J. Math. 6^(1942), 401-440.
  7. » P.J.Cameronv "Bounding the rank of certain permutation groups", Math. z. .124(1972), 343-352.
  8. R.W.Carter, 'Simple groups of Lie type 1 , V/iley (Interscience), London, 1972.
  9. J.H.Conway, "Three lectures on exceptional groups", Chapter VII of 'Finite Simple Groups', edited by M.B.Povell and G.Kigrnan, Academic £ress, 1971.
  10. D.Cooper, "Primitive permutation groups of degree 4p"» D.Phil. Thesis, Oxford, 1976.
  11. C.W.Curtis and I.Reiner, 'Representation theory of finite groups and associative algebras', V/iley (Interscience), New York, 1962.
  12. L.E.Dickson, 'Linear groups with an exposition of the Galois field theory', Dover, 1958.
  13. W.Feit, "Groups with a cyclic Sylow subgroup", Nagoya Math. J. 21(1966), 571-584.
  14. J.S.Frame, "The double cosets of a finite group", Bull. Amer. Math. Soc. £L(1941), 458-467.
  15. * J.A.Green, "A transfer theorem for modular representations", J. Algebra 1(1964), 73-84-
  16. J.A.Green, "Walking around the Brauer tree", J. Austral. Math. Soc. 17(1974), 197-213.
  17. -D.Harries and H.Liebeck, "Isomorphisms in switching classes of graphs", J. Austral. Math. Soc. 26(1978), 475-487.
  18. G.Higman, "On the simple group of D.G.Higtnan and C.C.Sims", 111. J. Math. H(1969), 74-84.
  19. W.C.Huffman and D.B.Wales, "Linear groups containing an involution with two eigenvalues -1", J. Algebra £2(1977), 465-515.
  20. B.Huppert, 'Eridliche Gruppen I', Springer-Verlag, Berlin, 1967.
  21. N.Ito, "Transitive permutation groups of degree p = 2q+1, p arid q being prime numbers, II", Trans. Amer. Math. Soc. H3(1964), 454-487.
  22. N.Ito, "Transitive permutation groups of degree p -2q+1, p and q being prime numbers, III", Trans. Amer. Math. Soc. 116(1965), 151-166.
  23. N.Ito, "Zur Theorie der Perrnutatiorisgruppen von Grad p", Math. Z. 74(1960), 299-301.
  24. N.Jacobson, 'Lie algebras', Wiley (interscience), New York, 1962.
  25. W.M.Kantor, "k-homogeneous groups", Math. Z. 124(1972), 261-265.
  26. M.Klernm, "Primitive Fermutationsgruppen von Primzahlpotenzgrad", Comm. Alg. £(1977), 193-205.
  27. E.Mathieu, "Memoire sur 1'etude des fonctions de plusieurs quantites, sur la manidre de les former et sur les substitutions qui les laissent invariables", J. Math. Pures Appl. (Liouville) (2 e serie), £(1861), 241-323.
  28. B.Mortimer, "The modular permutation representations of the known doubly transitive groups", to appear.
  29. P.M.Neumann, "Transitive permutation groups of prime degree", J. London Math. Soc. (2), £(1972), 202-208.
  30. P.M.Neumann, "Transitive permutation groups of prime degree, III: character theoretic observations", Proc. London Math. Soc. (3), 11(1975), 482-494.
  31. P.M.Neumann., "Transitive permutation groups of prime degree, IV: a problem of Mathieu and a theorem of Ito", Proc. London Math. Soc. (3) » 12(1976), 52-62.
  32. P.MoNeumann, "Generosity and characters of multiply transitive permutation groups", Proc. London Math. Soc. (3), H(1975)» 457-481.
  33. P.Mo Neumann, "Finite permuts/tion groups, edge-coloured graphs and matrices", Chapter 5 °f 'Topics in group theory and computation 1 , London, Academic Press, 1977-
  34. P.M.Neumann, 'Permutationsgru ppen von Primzahlgrad und verwandte Themen 1 , Lecture Notes, Mathematisches Institut, Giessen.
  35. « P.M.Neumann and J.Saxl, "The primitive permutation groups of some special degrees", Math. Z. jM6( 1976) , 101-104.
  36. B.Rothschild, "Degrees of irreducible modular characters of blocks with cyclic defect groups", Bull. Amer. Math. Soc. H(1967), 102-104.
  37. * P.Rowlinson, "Some problems in the theory of finite groups", D.Phil, Thesis, Oxford, 19&9-
  38. J.J.Seidel, "A survey of two-graphs", in 'Colloquio internazionale sulle teorie combinatorie' (Roma, 1973).
  39. C.C.Sims, "Computational methods in the study of permutation groups", pp.169-185 of 'Computational problems in abstract algebra 1 , edited by J.Leech, Pergammon Press, 1970.
  40. D.E.Taylor, "Some topics in the theory of finite groups", D.Phil. Thesis, Oxford, 1971.
  41. -H.F.TuaJi, "On groups whose order contains a prime number to the first power", Ann. Math. (2), ££(l) (1944), 110-140.
  42. H.Wielandt, 'Finite permutation groups', Academic Press, New York, • 1964. "We're home and dry." Margaret Thatcher.