Scalable Lattice Sampling using Factorized Generative Models
2023, arXiv (Cornell University)
https://doi.org/10.48550/ARXIV.2308.08615Abstract
Boltzmann distributions over lattices are pervasive in Computational Physics. Sampling them becomes increasingly difficult with increasing lattice-size, especially near critical regions, e.g., phase transitions in statistical systems and continuum limits in lattice field theory. Machine learning-based methods, such as normalizing flows, have demonstrated the ability to alleviate these issues for small lattices. However, scaling to large lattices is a major challenge. We present a novel approach called Parallelizable Block Metropolis-within-Gibbs (PBMG) for generating samples for any lattice model. It factorizes the joint distribution of the lattice into local parametric kernels, thereby allowing efficient sampling of very large lattices. We validate our approach on the XY model and the Scalar ϕ 4 theory. PBMG achieves high acceptance rates and less correlated samples, and the observable statistics estimated from the samples match the ground truth. Moreover, PBMG significantly speeds up inference for large lattices as compared to HMC and plain MCMC algorithms.
References (50)
- Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., Teller, E.: Equation of state calculations by fast computing machines. The journal of chemical physics 21(6), 1087-1092 (1953)
- Hastings, W.K.: Monte carlo sampling methods using markov chains and their applications (1970)
- Wolff, U.: Critical slowing down. Nuclear Physics B -Proceedings Supplements 17, 93-102 (1990) https://doi.org/10.1016/0920-5632(90)90224-I
- Schaefer, S., Sommer, R., Virotta, F., Collaboration, A., et al.: Critical slowing down and error analysis in lattice qcd simulations. Nuclear Physics B 845(1), 93-119 (2011)
- Swendsen, R.H., Wang, J.-S.: Nonuniversal critical dynamics in monte carlo simu- lations. Phys. Rev. Lett. 58, 86-88 (1987) https://doi.org/10.1103/PhysRevLett. 58.86
- Wolff, U.: Collective monte carlo updating for spin systems. Phys. Rev. Lett. 62, 361-364 (1989) https://doi.org/10.1103/PhysRevLett.62.361
- Prokof'ev, N.V., Svistunov, B.V., Tupitsyn, I.S.: "worm" algorithm in quantum monte carlo simulations. Physics Letters A 238(4), 253-257 (1998) https://doi. org/10.1016/S0375-9601(97)00957-2
- Evertz, H.G., Lana, G., Marcu, M.: Cluster algorithm for vertex models. Phys. Rev. Lett. 70, 875-879 (1993) https://doi.org/10.1103/PhysRevLett.70.875
- Syljuåsen, O.F., Sandvik, A.W.: Quantum monte carlo with directed loops. Phys. Rev. E 66, 046701 (2002) https://doi.org/10.1103/PhysRevE.66.046701
- Neal, R.M., et al.: Mcmc using hamiltonian dynamics. Handbook of markov chain monte carlo 2(11), 2 (2011)
- Cranmer, K., Kanwar, G., Racanière, S., Rezende, D.J., Shanahan, P.E.: Advances in machine-learning-based sampling motivated by lattice quantum chro- modynamics. Nature Rev. Phys. 5(9), 526-535 (2023) https://doi.org/10.1038/ s42254-023-00616-w arXiv:2309.01156 [hep-lat]
- Medvidovic, M., Carrasquilla, J., Hayward, L.E., Kulchytskyy, B.: Generative models for sampling of lattice field theories (2021)
- Albergo, M.S., Kanwar, G., Racanière, S., Rezende, D.J., Urban, J.M., Boyda, D., Cranmer, K., Hackett, D.C., Shanahan, P.E.: Flow-based sampling for fermionic lattice field theories. Phys. Rev. D 104(11), 114507 (2021) https://doi.org/10. 1103/PhysRevD.104.114507 arXiv:2106.05934 [hep-lat]
- Albergo, M.S., Boyda, D., Cranmer, K., Hackett, D.C., Kanwar, G., Racanière, S., Rezende, D.J., Romero-López, F., Shanahan, P.E., Urban, J.M.: Flow-based sampling in the lattice Schwinger model at criticality. Phys. Rev. D 106(1), 014514 (2022) https://doi.org/10.1103/PhysRevD.106.014514 arXiv:2202.11712 [hep-lat]
- Hackett, D.C., Hsieh, C.-C., Albergo, M.S., Boyda, D., Chen, J.-W., Chen, K.-F., Cranmer, K., Kanwar, G., Shanahan, P.E.: Flow-based sampling for multimodal distributions in lattice field theory. arXiv:2107.00734 (2021) arXiv:2107.00734 [hep-lat]
- Nicoli, K.A., Nakajima, S., Strodthoff, N., Samek, W., Müller, K.-R., Kessel, P.: Asymptotically unbiased estimation of physical observables with neural samplers. Phys. Rev. E 101, 023304 (2020) https://doi.org/10.1103/PhysRevE.101.023304
- Nicoli, K.A., Anders, C.J., Funcke, L., Hartung, T., Jansen, K., Kessel, P., Nakajima, S., Stornati, P.: Estimation of thermodynamic observables in lattice field theories with deep generative models. Phys. Rev. Lett. 126, 032001 (2021) https://doi.org/10.1103/PhysRevLett.126.032001
- Caselle, M., Cellini, E., Nada, A.: Sampling the lattice Nambu-Goto string using Continuous Normalizing Flows (2023) arXiv:2307.01107 [hep-lat]
- Reyes-Gonzalez, H., Torre, R.: The NFLikelihood: an unsupervised DNNLikeli- hood from Normalizing Flows (2023) arXiv:2309.09743 [hep-ph]
- Coccaro, A., Letizia, M., Reyes-Gonzalez, H., Torre, R.: On the curse of dimensionality for Normalizing Flows (2023) arXiv:2302.12024 [stat.ML]
- Kanwar, G., Albergo, M.S., Boyda, D., Cranmer, K., Hackett, D.C., Racanière, S., Rezende, D.J., Shanahan, P.E.: Equivariant flow-based sampling for lattice gauge theory. Physical Review Letters 125(12) (2020) https://doi.org/10.1103/ physrevlett.125.121601
- Eichhorn, T., Fuwa, G., Hoelbling, C., Varnhorst, L.: Parallel Tempered Meta- dynamics: Overcoming potential barriers without surfing or tunneling (2023) arXiv:2307.04742 [hep-lat]
- Abbott, R., et al.: Gauge-equivariant flow models for sampling in lattice field theories with pseudofermions. Phys. Rev. D 106(7), 074506 (2022) https://doi. org/10.1103/PhysRevD.106.074506 arXiv:2207.08945 [hep-lat]
- Abbott, R., et al.: Sampling QCD field configurations with gauge-equivariant flow models. PoS LATTICE2022, 036 (2023) https://doi.org/10.22323/1.430.0036 arXiv:2208.03832 [hep-lat]
- Abbott, R., et al.: Normalizing flows for lattice gauge theory in arbitrary space- time dimension (2023) arXiv:2305.02402 [hep-lat]
- Wang, L., Aarts, G., Zhou, K.: Diffusion Models as Stochastic Quantization in Lattice Field Theory (2023) arXiv:2309.17082 [hep-lat]
- Foreman, S., Izubuchi, T., Jin, L., Jin, X.-Y., Osborn, J.C., Tomiya, A.: HMC with Normalizing Flows. PoS LATTICE2021, 073 (2022) https://doi.org/10. 22323/1.396.0073 arXiv:2112.01586 [cs.LG]
- Foreman, S., Jin, X.-Y., Osborn, J.C.: LeapfrogLayers: A Trainable Framework for Effective Topological Sampling. PoS LATTICE2021, 508 (2022) https://doi. org/10.22323/1.396.0508 arXiv:2112.01582 [hep-lat]
- Boyda, D., et al.: Applications of Machine Learning to Lattice Quantum Field Theory. In: Snowmass 2021 (2022)
- Song, J., Zhao, S., Ermon, S.: A-NICE-MC: Adversarial Training for MCMC. arXiv (2017). https://doi.org/10.48550/ARXIV.1706.07561 . https://arxiv.org/ abs/1706.07561
- Liu, J., Qi, Y., Meng, Z.Y., Fu, L.: Self-learning monte carlo method. Phys. Rev. B 95, 041101 (2017) https://doi.org/10.1103/PhysRevB.95.041101
- Chen, C., Xu, X.Y., Liu, J., Batrouni, G., Scalettar, R., Meng, Z.Y.: Symmetry- enforced self-learning monte carlo method applied to the holstein model. Phys. Rev. B 98, 041102 (2018) https://doi.org/10.1103/PhysRevB.98.041102
- Huang, L., Wang, L.: Accelerated monte carlo simulations with restricted boltzmann machines. Physical Review B 95(3), 035105 (2017)
- Singh, J., Scheurer, M.S., Arora, V.: Conditional generative models for sampling and phase transition indication in spin systems. SciPost Phys. 11, 043 (2021) https://doi.org/10.21468/SciPostPhys.11.2.043
- Singha, A., Chakrabarti, D., Arora, V.: Generative learning for the problem of critical slowing down in lattice Gross-Neveu model. SciPost Phys. Core 5, 052 (2022) https://doi.org/10.21468/SciPostPhysCore.5.4.052 arXiv:2111.00574 [hep-lat]
- Pawlowski, J.M., Urban, J.M.: Reducing autocorrelation times in lattice sim- ulations with generative adversarial networks. Machine Learning: Science and Technology 1(4), 045011 (2020)
- Cristoforetti, M., Jurman, G., Nardelli, A.I., Furlanello, C.: Towards meaningful physics from generative models. arXiv (2017). https://doi.org/10.48550/ARXIV. 1705.09524 . https://arxiv.org/abs/1705.09524
- Noé, F., Olsson, S., Köhler, J., Wu, H.: Boltzmann generators: Sam- pling equilibrium states of many-body systems with deep learning. Science 365(6457), 1147 (2019) https://doi.org/10.1126/science.aaw1147 https://www.science.org/doi/pdf/10.1126/science.aaw1147
- Albergo, M.S., Kanwar, G., Shanahan, P.E.: Flow-based generative models for markov chain monte carlo in lattice field theory. Physical Review D 100(3), 034515 (2019)
- Singha, A., Chakrabarti, D., Arora, V.: Conditional normalizing flow for Markov chain Monte Carlo sampling in the critical region of lattice field theory. Phys. Rev. D 107(1), 014512 (2023) https://doi.org/10.1103/PhysRevD.107.014512
- Singha, A., Chakrabarti, D., Arora, V.: Sampling U (1) gauge theory using a re-trainable conditional flow-based model (2023) arXiv:2306.00581 [hep-lat]
- Abbott, R., Albergo, M.S., Botev, A., Boyda, D., Cranmer, K., Hackett, D.C., Matthews, A.G.D.G., Racanière, S., Razavi, A., Rezende, D.J., Romero-López, F., Shanahan, P.E., Urban, J.M.: Aspects of scaling and scalability for flow-based sampling of lattice QCD (2022)
- Wang, T., Wu, Y., Moore, D., Russell, S.J.: Meta-learning mcmc proposals. Advances in neural information processing systems 31 (2018)
- Durkan, C., Bekasov, A., Murray, I., Papamakarios, G.: Neural spline flows. Advances in neural information processing systems 32 (2019)
- Jones, G.L., Roberts, G.O., Rosenthal, J.S.: Convergence of conditional Metropolis-Hastings samplers. Advances in Applied Probability 46(2), 422-445 (2014)
- De, A.K., Harindranath, A., Maiti, J., Sinha, T.: Investigations in 1 + 1 dimen- sional lattice ϕ 4 theory. Phys. Rev. D 72, 094503 (2005) https://doi.org/10.1103/ PhysRevD.72.094503
- De, A.K., Harindranath, A., Maiti, J., Sinha, T.: Topological charge in 1 + 1 dimensional lattice ϕ 4 theory. Phys. Rev. D 72, 094504 (2005) https://doi.org/ 10.1103/PhysRevD.72.094504
- Vierhaus, I.: Simulation of phi 4 theory in the strong coupling expansion beyond the ising limit. Master's thesis, Humboldt-Universität zu Berlin, Mathematisch- Naturwissenschaftliche Fakultät I (2010). https://doi.org/10.18452/14138
- Vats, D., Flegal, J.M., Jones, G.L.: Multivariate output analysis for Markov chain Monte Carlo. Biometrika 106(2), 321-337 (2019) https: //doi.org/10.1093/biomet/asz002 https://academic.oup.com/biomet/article- pdf/106/2/321/28575440/asz002.pdf
- Albergo, M.S., Boyda, D., Hackett, D.C., Kanwar, G., Cranmer, K., Racanière, S., Rezende, D.J., Shanahan, P.E.: Introduction to Normalizing Flows for Lattice Field Theory (2021)