Academia.eduAcademia.edu

Outline

Data validation of uncertain dynamic systems

2004, 15th International Workshop on Principles of Diagnosis, DX'04

Abstract

Abstract. The methods of data validation which were developed these last years largely call for the redundancy resulting from models. The case of models with certain parameters (static and/or dynamic) was analyzed and received many solutions. However, there is relatively few work concerning the data validation in the presence of model uncertainties. The aim of this communication is to present a method of data validation for dynamic linear systems, which is able to take into account the uncertainties of the model parameters. Firstly we represent ...

References (12)

  1. O. Adrot, Diagnostic à base de modèles incertains utilisant l'analyse par intervalles : l'approche bornante, Doctorat de l'Institut National Polytechnique de Lorraine, Spécialité automatique, Vandoeuvre-les- Nancy, France, 2000.
  2. M. Alhaj Dibo, D. Maquin, and J. Ragot, 'Validation de données par approche bornante', Journées Doctorales d'Automatique -Valencienne -France, 347-352, (2003).
  3. J. Armengol, J. Vehi, M. Angel Sainz, and P.J. Herrero, 'Fault detection in a pilot plant using interval models and multiple sliding time win- dows', Safeprocess -Washington -USA, 729-734, (2003).
  4. I.C. Chang, C.C. Yu, and C.T.J. Liou, 'Model-based approach for fault diagnosis. part 2. extension to interval systems', Industrial Engineering Chemical Research, 34, 828-844, (1995).
  5. L. Jaulin, M. Kieffer, O. Didrit, and E. Walter, Applied Interval Analy- sis, Springer, London, 2001.
  6. A. Johansson and T. Norlander, 'Parametric uncertainty in sensor fault detection for a turbofan jet engine', 42nd IEEE -Conference on Deci- sion and Control -Hawaii -USA, 1950-1955, (2003).
  7. D. Maquin and J. Ragot, 'Validation de données issues de systèmes de mesure incertains', Journal Européen des Systèmes Automatisés RS- série JESA numéro spécial Applications des outils de calculs ensemb- listes, 37, n • 9, (2003).
  8. M. Milanese, J. Norton, H. Piet-Lahanier, and E. Walter, Bounding ap- proaches to system identification, Plenum Press, New York and London, 1996.
  9. A. Neumaier, Interval methods for systems of equations, Cambridge University Press, Cambridge, 1990.
  10. R.J. Patton, P.M. Frank, and R.N. Clark, Fault diagnosis in dynamic systems : theory and application, Prentice Hall, New Jersey, 1989.
  11. S. Ploix, Diagnostic des systèmes incertains : l'approche bornante, Doctorat de l'Institut National Polytechnique de Lorraine, Spécialité automatique, Vandoeuvre-les-Nancy, France, 1998.
  12. J. Ragot, A. Boukhris, and D. Mandel, 'A propos de l'algèbre des in- tervalles. application à la validation de données', Rencontres Franco- phones sur la Logique Floue -Lyon -France, (1997).