Otec
Proceedings of the 2nd International Workshop on Design, Deployment, and Evaluation of Network-Assisted Video Streaming
https://doi.org/10.1145/3565476.3569099Abstract
Encoding and transcoding videos into multiple codecs and representations is a significant challenge that requires seconds or even days on high-performance computers depending on many technical characteristics, such as video complexity or encoding parameters. Cloud computing offering on-demand computing resources optimized to meet the needs of customers and their budgets is a promising technology for accelerating dynamic transcoding workloads. In this work, we propose OTEC, a novel multi-objective optimization method based on the mixed-integer linear programming model to optimize the computing instance selection for transcoding processes. OTEC determines the type and number of cloud and fog resource instances for video encoding and transcoding tasks with optimized computation cost and time. We evaluated OTEC on AWS EC2 and Exoscale instances for various administrator priorities, the number of encoded video segments, and segment transcoding times. The results show that OTEC can achieve appropriate resource selections and satisfy the administrator's priorities in terms of time and cost minimization.
References (19)
- Agrawal, A. Zabrovskiy, A. Ilangovan, Timmerer, and R. Prodan. Fastttps: fast approach for video transcoding time prediction and for http adaptive streaming videos. Cluster Computing, 24(3):1605-1621, 2021.
- A. Bentaleb, B. Taani, A. C. Begen, C. Timmerer, and R. Zimmermann. A survey on bitrate adaptation schemes for streaming media over http. IEEE Communications Surveys & Tutorials, 21(1):562-585, 2019.
- S. M. A. H. Bukhari, K. Bilal, A. Erbad, A. Mohamed, and M. Guizani. Video transcoding at the edge: cost and feasibility perspective. Cluster Computing, pages 1-24, 2022.
- L. Costero, A. Iranfar, M. Zapater, F. D. Igual, K. Olcoz, and D. Atienza. Mamut: Multi-agent reinforcement learning for efficient real-time multi-user video transcoding. In 2019 Design, Automation & Test in Europe Conference & Exhibition (DATE), pages 558-563. IEEE, 2019.
- A. Erfanian, H. Amirpour, F. Tashtarian, C. Timmerer, and H. Hellwagner. Lwte- live: Light-weight transcoding at the edge for live streaming. In Proceedings of the Workshop on Design, Deployment, and Evaluation of Network-Assisted Video Streaming, pages 22-28, 2021.
- A. Erfanian, F. Tashtarian, A. Zabrovskiy, C. Timmerer, and H. Hellwagner. Oscar: On optimizing resource utilization in live video streaming. IEEE Transactions on Network and Service Management, 18(1):552-569, 2021.
- M. Farrokh, H. Hadian, M. Sharifi, and A. Jafari. Sp-ant: An ant colony optimization based operator scheduler for high performance distributed stream processing on heterogeneous clusters. Expert Systems with Applications, 191:116322, 2022.
- G. Gao and Y. Wen. Morph: A fast and scalable cloud transcoding system. In Proceedings of the 24th ACM international conference on Multimedia, pages 1160- 1163, 2016.
- G. Gao, Y. Wen, and C. Westphal. Dynamic priority-based resource provisioning for video transcoding with heterogeneous qos. IEEE Transactions on Circuits and Systems for Video Technology, 29(5):1515-1529, 2018.
- J. Gutierrez-Aguado, R. Peña-Ortiz, M. García-Pineda, and J. M. Claver. Cloud- based elastic architecture for distributed video encoding: Evaluating h. 265, vp9, and av1. Journal of Network and Computer Applications, 171:102782, 2020.
- X. Li, M. A. Salehi, M. Bayoumi, N.-F. Tzeng, and R. Buyya. Cost-efficient and robust on-demand video transcoding using heterogeneous cloud services. IEEE Transactions on Parallel and Distributed Systems, 29(3):556-571, 2017.
- X. Li, M. A. Salehi, Y. Joshi, M. K. Darwich, B. Landreneau, and M. Bayoumi. Performance analysis and modeling of video transcoding using heterogeneous cloud services. IEEE Transactions on Parallel and Distributed Systems, 30(4):910- 922, 2018.
- S. Mitchell, M. OSullivan, and I. Dunning. Pulp: a linear programming toolkit for python. The University of Auckland, Auckland, New Zealand, 65, 2011.
- S. Sameti, M. Wang, and D. Krishnamurthy. Stride: Distributed video transcoding in spark. In 2018 IEEE 37th International Performance Computing and Communications Conference (IPCCC), pages 1-8. IEEE, 2018.
- V. K. Vavilapalli, A. C. Murthy, C. Douglas, S. Agarwal, M. Konar, R. Evans, T. Graves, J. Lowe, H. Shah, S. Seth, et al. Apache hadoop yarn: Yet another resource negotiator. In Proceedings of the 4th annual Symposium on Cloud Computing, pages 1-16, 2013.
- S. Yi, C. Li, and Q. Li. A survey of fog computing: concepts, applications and issues. In Proceedings of the 2015 workshop on mobile big data, pages 37-42, 2015.
- A. Zabrovskiy, P. Agrawal, V. Kashansky, R. Kersche, C. Timmerer, and R. Prodan. Fspot: Fast and efficient video encoding workloads over amazon spot instances. CMC-COMPUTERS MATERIALS & CONTINUA, 71(3):5677-5697, 2022.
- M. Zaharia, R. S. Xin, P. Wendell, T. Das, M. Armbrust, A. Dave, X. Meng, J. Rosen, S. Venkataraman, M. J. Franklin, et al. Apache spark: a unified engine for big data processing. Communications of the ACM, 59(11):56-65, 2016.
- H. Zhao, Q. Zheng, W. Zhang, and J. Wang. Prediction-based and locality- aware task scheduling for parallelizing video transcoding over heterogeneous mapreduce cluster. IEEE Transactions on Circuits and Systems for Video Technology, 28(4):1009-1020, 2016.