Academia.eduAcademia.edu

Outline

On the Jacobian variety of the Fermat curve

1980, Journal of Algebra

https://doi.org/10.1016/0021-8693(80)90236-7

Abstract

The structure of the p-divisible groups arising from Fermat curves over finite fields of characteristic p > 0 is completely determined, up to isogeny, by purely arithmetic means. In certain cases, the "global" structure of the Jacobian varieties of Fermat curves, up to isogeny, is also determined.

References (24)

  1. Investigate the possibilities to define and then to determine the p-divisible (formal) groups associated to the hypersurfaces (Fermat varieties) X0 '~ + X~ ~ + "-+ Xr ~ = 0 over fields of finite characteristic. For r --~ 3, see Yui [21].
  2. Once (b) is settled, consider the hypersurfaces aoXo "~ -/alX1 ~ + "" + arXr "~ : 0
  3. defined over fields of finite characteristic. Study the p-diviible groups arising from them and investigate the relations with Fermat varieties. R~rEarNCrS
  4. M. ARTIN AND B. MAZUR, Formal groups arising from algebraic varieties, Ann. Sci. l~cole Norm. Sup. (4) 10 (1977), 87--132.
  5. M. DEMAZURE, "On p-Divisible Groups," Lecture Notes in Mathematics, No. 302. Springer-Verlag, New York/Berlin, 1972.
  6. H. HASSE AND E. WITT, Zyklische unverzweigte ErweiterungskSrper vom Primzahl- grade p fiber einem algebraischen FunktionenkSrper der Charaketristik p, Monatsh. Math. Phys. 43 (1936), 477-492.
  7. T. HONDA, On the Jacobian variety of the aigebraic curve y~ = 1 --x ~ over a field of characteristic p > 0, Osaka J. Math. 3 (1966), 189-194.
  8. T. HONDA, Isogeny classes of abelian varieties over finite fields, J. Math. Soc. Japan 20 (1968), 83-95.
  9. Yu. I. MANIN, The theory of commutative formal groups over fields of finite charac- teristic, Russian Math. Surveys 18, No. 6 (1963), 3-90.
  10. Yu. I. MANIN, The Hasse-Witt matrix of an algebraic curve, Amer. Math. Soc. Transl. 45 (1965), 245-264.
  11. T. ODA, The first de Rham cohomology group and Dieudonn6 modules, Ann. Sci. l~cole Norm. Sup. (4) 2 (1969), 63-135.
  12. J.-P. S~p.Rn, Sur la topologie des varibt6s alg6briques en caract6ristique p, in "Pro- ceedings, Symposium International de top01ogia Algebraica" pp. 24-53, 1958.
  13. T. SHIODA AND T. KATSURA, On Fermat varieties, Tdhoku Math. J. 31, No. 1 (1979), 97-113.
  14. L. STICKELBERGER, ~ber eine VerallgerneinerUng der Kreisteilung, Math. Ann. 37 (1890), 321-367.
  15. J. TATE, p-Divisible groups, in "Proceedings of a Conference on Local Field NUFFIC Summer School, Driebergen, Netherlands, 1966," pp. 158-183, Springer-Verlag, New Tork/Berlin, 1967.
  16. J. TATE, Endomorphisms of abelian varieties over finite fields, Invent. Math. 2 (1966), 134-144.
  17. W. WATERHOUSE, Abelian varieties over finite fields, .4nn. Sci. l~eole Norm. Sup. (4) 2 (1969), 521-560.
  18. W. WATERHOUSE AND J. MILNE, Abelian varieties over finite fields, in "Proceedings of Symposia in Pure Mathematics, 1969," pp. 53-64, Number Theory Institute, Amer. Math. Soc., Providence, R.I., 1971.
  19. A. WEIL, Numbers of solutions of equations in finite fields, Bull. Amer. Math. Soc. 55 (1949), 497-508.
  20. A. WEIL, Jacobi sums as "Gr6ssencharaktere" Trans. Amer. Math. Soc. 73 (1952), 487-495.
  21. N. YuI, On the Jacobian varieties of hyperelliptic curves over fields of characteristic p ~ 2, f. Algebra 52 (1978), 378-410.
  22. N. YuI, On the hyperelliptic curve y2 ~ x 7 + ax ~ 1, Kobenhavns Universitets Matematiske Institut Preprint Series, No. 11, 1978.
  23. N. YuI, On the p-divisible groups arising from the Fermat curves, C. R. Math. Rep. Acad. Sci. Canad. 1, No. 4 (1979), 191-194.
  24. N. YuI, The arithmetic of Fermat surfaces over finite fields, in preparation.