On the Jacobian variety of the Fermat curve
1980, Journal of Algebra
https://doi.org/10.1016/0021-8693(80)90236-7Abstract
The structure of the p-divisible groups arising from Fermat curves over finite fields of characteristic p > 0 is completely determined, up to isogeny, by purely arithmetic means. In certain cases, the "global" structure of the Jacobian varieties of Fermat curves, up to isogeny, is also determined.
References (24)
- Investigate the possibilities to define and then to determine the p-divisible (formal) groups associated to the hypersurfaces (Fermat varieties) X0 '~ + X~ ~ + "-+ Xr ~ = 0 over fields of finite characteristic. For r --~ 3, see Yui [21].
- Once (b) is settled, consider the hypersurfaces aoXo "~ -/alX1 ~ + "" + arXr "~ : 0
- defined over fields of finite characteristic. Study the p-diviible groups arising from them and investigate the relations with Fermat varieties. R~rEarNCrS
- M. ARTIN AND B. MAZUR, Formal groups arising from algebraic varieties, Ann. Sci. l~cole Norm. Sup. (4) 10 (1977), 87--132.
- M. DEMAZURE, "On p-Divisible Groups," Lecture Notes in Mathematics, No. 302. Springer-Verlag, New York/Berlin, 1972.
- H. HASSE AND E. WITT, Zyklische unverzweigte ErweiterungskSrper vom Primzahl- grade p fiber einem algebraischen FunktionenkSrper der Charaketristik p, Monatsh. Math. Phys. 43 (1936), 477-492.
- T. HONDA, On the Jacobian variety of the aigebraic curve y~ = 1 --x ~ over a field of characteristic p > 0, Osaka J. Math. 3 (1966), 189-194.
- T. HONDA, Isogeny classes of abelian varieties over finite fields, J. Math. Soc. Japan 20 (1968), 83-95.
- Yu. I. MANIN, The theory of commutative formal groups over fields of finite charac- teristic, Russian Math. Surveys 18, No. 6 (1963), 3-90.
- Yu. I. MANIN, The Hasse-Witt matrix of an algebraic curve, Amer. Math. Soc. Transl. 45 (1965), 245-264.
- T. ODA, The first de Rham cohomology group and Dieudonn6 modules, Ann. Sci. l~cole Norm. Sup. (4) 2 (1969), 63-135.
- J.-P. S~p.Rn, Sur la topologie des varibt6s alg6briques en caract6ristique p, in "Pro- ceedings, Symposium International de top01ogia Algebraica" pp. 24-53, 1958.
- T. SHIODA AND T. KATSURA, On Fermat varieties, Tdhoku Math. J. 31, No. 1 (1979), 97-113.
- L. STICKELBERGER, ~ber eine VerallgerneinerUng der Kreisteilung, Math. Ann. 37 (1890), 321-367.
- J. TATE, p-Divisible groups, in "Proceedings of a Conference on Local Field NUFFIC Summer School, Driebergen, Netherlands, 1966," pp. 158-183, Springer-Verlag, New Tork/Berlin, 1967.
- J. TATE, Endomorphisms of abelian varieties over finite fields, Invent. Math. 2 (1966), 134-144.
- W. WATERHOUSE, Abelian varieties over finite fields, .4nn. Sci. l~eole Norm. Sup. (4) 2 (1969), 521-560.
- W. WATERHOUSE AND J. MILNE, Abelian varieties over finite fields, in "Proceedings of Symposia in Pure Mathematics, 1969," pp. 53-64, Number Theory Institute, Amer. Math. Soc., Providence, R.I., 1971.
- A. WEIL, Numbers of solutions of equations in finite fields, Bull. Amer. Math. Soc. 55 (1949), 497-508.
- A. WEIL, Jacobi sums as "Gr6ssencharaktere" Trans. Amer. Math. Soc. 73 (1952), 487-495.
- N. YuI, On the Jacobian varieties of hyperelliptic curves over fields of characteristic p ~ 2, f. Algebra 52 (1978), 378-410.
- N. YuI, On the hyperelliptic curve y2 ~ x 7 + ax ~ 1, Kobenhavns Universitets Matematiske Institut Preprint Series, No. 11, 1978.
- N. YuI, On the p-divisible groups arising from the Fermat curves, C. R. Math. Rep. Acad. Sci. Canad. 1, No. 4 (1979), 191-194.
- N. YuI, The arithmetic of Fermat surfaces over finite fields, in preparation.