Academia.eduAcademia.edu

Outline

Transitionless driving on adiabatic search algorithm

2014, Journal of Chemical Physics

Abstract

We study quantum dynamics of Grover's adiabatic search algorithm with the equivalent two-level system. Its adiabatic and non-adiabatic evolutions are visualized as trajectories of Bloch vectors on a Bloch sphere. We find the change in the non-adiabatic transition probability from exponential decay for short running time to inverse-square decay for long running time. The size dependence of the critical running time is expressed in terms of Lambert W function. The transitionless driving Hamiltonian is obtained to make a quantum state follow the adiabatic path. We demonstrate that a constant Hamiltonian, approximate to the exact time-dependent driving Hamiltonian, can alter the non-adiabatic transition probability from the inverse square decay to the inverse fourth power decay with running time. This may open up a new way of reducing errors in adiabatic quantum computation.

References (23)

  1. Lov K. Grover, Phys. Rev. Lett., 79, 325 (1997).
  2. E. Farhi, J. Goldstone, S. Gutmann, J. Lapan, A. Lund- gren, and D. Preda, Science 292, 472 (2001).
  3. W. van Dam, M. Mosca, and U. Vazirani, Proceedings of the 42nd Annual Symposium on Foundations of Com- puter Science, p. 279-287 (2001).
  4. D. Aharonov, W. Van Dam, J. KEPME, Z. Landau, S. Lloyd, and O. Regev, SIAM J. Comput. 37, 166 (2007).
  5. J. Roland and N. J. Cerf, Phys. Rev. A 68, 062311 (2003); ibid, 062312 (2003).
  6. A. Messiah, Quantum Mechanics (North-Holland, Ams- terdam, 1963).
  7. G. Schaller, S. Mostame, R. Schützhold, Phys. Rev. A 73, 062307 (2006).
  8. R. A. Horn and C. R. Johnson, Matrix Analysis (Cam- bridge Univ. Press, Cambridge, 1990), p. 39.
  9. V. Betz and S. Teufel, in Lect. Notes Phys. 690, 19 (2006).
  10. L. D. Landau, Physics of the Soviet Union 2, 46 (1932).
  11. C. M. Zener, Proc. R. Soc. London Ser. A 137, 696 (1932).
  12. E. Majorana, Nuovo Cimento 9, 43 (1932).
  13. E. C. G. Stückelberg, Helv. Phys. Acta 5, 369 (1932).
  14. S. Suzuki and M. Okada, in Lect. Notes Phys. 679, 207 (2005).
  15. A. T. Rezakhani, A. K. Pimachev, and D. A. Lidar Phys. Rev. A 82, 052305 (2010).
  16. G. E. Santoro, R. Martoňák, E. Tosatti, and R. Car, Science 295, 2427 (2002).
  17. S. Oh, Y.-P. Shim, J. Fei, M. Friesen, and X. Hu, Phys. Rev. A 87, 022332 (2013).
  18. J. H. Lambert, Acta Helvetica, Physico-mathematico- anatomico-13botanico-medica 3, 128 (1758).
  19. R. M. Corless, G. H. Gonnet, D. E. G. Hare, D. J. Jeffrey, and D. E. Knuth, Adv. in Comp. Math., 5 329 (1996).
  20. M. Demirplak and S. A. Rice, J. Phys. Chem. A 107, 9937 (2003).
  21. M. V. Berry, J. Phys. A: Math. Theor. 42, 365303 (2009).
  22. A. del Campo, M. M. Rams, and W. H. Zurek, Phys. Rev. Lett. 109, 115703 (2012).
  23. S. Boixo, T. Albash, F. M. Spedalieri, N. Chancellor, and D. A. Lidar, Nat. Commun. 4, 3067 (2013).