Transitionless driving on adiabatic search algorithm
2014, Journal of Chemical Physics
Abstract
We study quantum dynamics of Grover's adiabatic search algorithm with the equivalent two-level system. Its adiabatic and non-adiabatic evolutions are visualized as trajectories of Bloch vectors on a Bloch sphere. We find the change in the non-adiabatic transition probability from exponential decay for short running time to inverse-square decay for long running time. The size dependence of the critical running time is expressed in terms of Lambert W function. The transitionless driving Hamiltonian is obtained to make a quantum state follow the adiabatic path. We demonstrate that a constant Hamiltonian, approximate to the exact time-dependent driving Hamiltonian, can alter the non-adiabatic transition probability from the inverse square decay to the inverse fourth power decay with running time. This may open up a new way of reducing errors in adiabatic quantum computation.
References (23)
- Lov K. Grover, Phys. Rev. Lett., 79, 325 (1997).
- E. Farhi, J. Goldstone, S. Gutmann, J. Lapan, A. Lund- gren, and D. Preda, Science 292, 472 (2001).
- W. van Dam, M. Mosca, and U. Vazirani, Proceedings of the 42nd Annual Symposium on Foundations of Com- puter Science, p. 279-287 (2001).
- D. Aharonov, W. Van Dam, J. KEPME, Z. Landau, S. Lloyd, and O. Regev, SIAM J. Comput. 37, 166 (2007).
- J. Roland and N. J. Cerf, Phys. Rev. A 68, 062311 (2003); ibid, 062312 (2003).
- A. Messiah, Quantum Mechanics (North-Holland, Ams- terdam, 1963).
- G. Schaller, S. Mostame, R. Schützhold, Phys. Rev. A 73, 062307 (2006).
- R. A. Horn and C. R. Johnson, Matrix Analysis (Cam- bridge Univ. Press, Cambridge, 1990), p. 39.
- V. Betz and S. Teufel, in Lect. Notes Phys. 690, 19 (2006).
- L. D. Landau, Physics of the Soviet Union 2, 46 (1932).
- C. M. Zener, Proc. R. Soc. London Ser. A 137, 696 (1932).
- E. Majorana, Nuovo Cimento 9, 43 (1932).
- E. C. G. Stückelberg, Helv. Phys. Acta 5, 369 (1932).
- S. Suzuki and M. Okada, in Lect. Notes Phys. 679, 207 (2005).
- A. T. Rezakhani, A. K. Pimachev, and D. A. Lidar Phys. Rev. A 82, 052305 (2010).
- G. E. Santoro, R. Martoňák, E. Tosatti, and R. Car, Science 295, 2427 (2002).
- S. Oh, Y.-P. Shim, J. Fei, M. Friesen, and X. Hu, Phys. Rev. A 87, 022332 (2013).
- J. H. Lambert, Acta Helvetica, Physico-mathematico- anatomico-13botanico-medica 3, 128 (1758).
- R. M. Corless, G. H. Gonnet, D. E. G. Hare, D. J. Jeffrey, and D. E. Knuth, Adv. in Comp. Math., 5 329 (1996).
- M. Demirplak and S. A. Rice, J. Phys. Chem. A 107, 9937 (2003).
- M. V. Berry, J. Phys. A: Math. Theor. 42, 365303 (2009).
- A. del Campo, M. M. Rams, and W. H. Zurek, Phys. Rev. Lett. 109, 115703 (2012).
- S. Boixo, T. Albash, F. M. Spedalieri, N. Chancellor, and D. A. Lidar, Nat. Commun. 4, 3067 (2013).