Mass testing and characterization of 20-inch PMTs for JUNO
The European Physical Journal C
https://doi.org/10.1140/EPJC/S10052-022-11002-8Abstract
Main goal of the JUNO experiment is to determine the neutrino mass ordering using a 20 kt liquid-scintillator detector. Its key feature is an excellent energy resolution of at least 3% at 1 MeV, for which its instruments need to meet a certain quality and thus have to be fully characterized. More than 20,000 20-inch PMTs have been received and assessed by JUNO after a detailed testing program which began in 2017 and elapsed for about four years. Based on this mass characterization and a set of specific requirements, a good quality of all accepted PMTs could be ascertained. This paper presents the performed testing procedure with the designed testing systems as well as the statistical characteristics of all 20-inch PMTs intended to be used in the JUNO experiment, covering more than fifteen performance parameters including the photocathode uniformity. This constitutes the largest sample of 20-inch PMTs ever produced and studied in detail to date, i.e. 15,000 of the newly developed 20-...
References (101)
- T. Adam et al., JUNO conceptual design report. e-print (2015). arXiv:1508.07166 [physics.ins-det]
- F. An et al., Neutrino physics with JUNO. J. Phys. G 43(3), 030401 (2016). https://doi.org/10.1088/0954-3899/43/3/ 030401. arXiv:1507.05613 [physics.ins-det]
- Y. Li et al., Unambiguous determination of the neutrino mass hier- archy using reactor neutrinos. Phys. Rev. D 88, 013008 (2013). https://doi.org/10.1103/PhysRevD.88.013008. arXiv:1303.6733 [hep-ex]
- L. Zhan et al., Determination of the neutrino mass hierarchy at an intermediate baseline. Phys. Rev. D 78, 111103 (2008). https://doi.org/10.1103/PhysRevD.78.111103. arXiv:0807.3203 [hep-ex]
- P. Lombardi, JUNO detector: design and construction. JINST 15(04), C04028 (2020). https://doi.org/10.1088/1748-0221/15/ 04/C04028
- Z. Wang, JUNO central detector and its prototyping. J. Phys. Conf. Ser. 718(6), 062075 (2016). https://doi.org/10.1088/1742-6596/ 718/6/062075
- Y. Heng, The central detector of JUNO. Asian Forum for Accel- erators and Detectors (AFAD) 2018, Daejeon, Korea Republic. https://indico.ibs.re.kr/event/191/material/slides/31.pdf
- A. Abusleme et al., JUNO physics and detector. Prog. Part. Nucl. Phys. 123, 103927 (2022). https://doi.org/10.1016/j.ppnp. 2021.103927. https://www.sciencedirect.com/science/article/pii/ S0146641021000880
- A. Abusleme et al., Optimization of the JUNO liquid scin- tillator composition using a Daya Bay antineutrino detector. Nucl. Instrum. Methods Phys. Res. Sect. A: Accel. Spec- trom. Detect. Assoc. Equip. 988, 164823 (2021). https:// doi.org/10.1016/j.nima.2020.164823. https://www.sciencedirect. com/science/article/pii/S0168900220312201
- A. Abusleme et al., Calibration strategy of the JUNO experiment. J. High Energy Phys. 2021(3), 4 (2021). https://doi.org/10.1007/ JHEP03(2021)004. arXiv:2011.06405 [physics.ins-det]
- B. Jelmini et al. Characterization of the JUNO Large-PMT read- out electronics, in 17th International Conference on Topics in Astroparticle and Underground Physics (TAUP) 2021, Valencia, Spain. https://indico.ific.uv.es/event/6178/contributions/15559/ attachments/9213/12118/TAUP21_LPMTelectronics_v4.pdf
- M. Bellato et al., Embedded readout electronics R&D for the large PMTs in the JUNO experiment. Nucl. Instrum. Meth- ods A 985, 164600 (2021). https://doi.org/10.1016/j.nima.2020. 164600. arXiv:2003.08339 [physics.ins-det]
- Z. Deng, Status of JUNO simulation software, in 24th Interna- tional Conference on Computing in High-Energy and Nuclear Physics (CHEP) 2019, Adelaide, Australia. https://indico.cern. ch/event/773049/contributions/3474727/attachments/1935988/ 3211193/dengzy_JUNO_detsim_CHEP2019.pdf
- Q. Liu et al., A vertex reconstruction algorithm in the central detec- tor of JUNO. JINST 13(9), T09005 (2018). https://doi.org/10. 1088/1748-0221/13/09/T09005. arXiv:1803.09394 [physics.ins- det]
- Z. Qian et al., Vertex and energy reconstruction in JUNO with machine learning methods. Nucl. Instrum. Methods A 1010, 165527 (2021). https://doi.org/10.1016/j.nima.2021. 165527. arXiv:2101.04839 [physics.ins-det]
- M. Weifels, Energy reconstruction and resolution of the JUNO detector. Master thesis, RWTH Aachen University (2015). https:// www.rwth-aachen.de/global/show_document.asp?id=apzlcg
- Z. Qin, The 20-inch PMT instrumentation for the JUNO exper- iment. Zenodo, in XXVIII International Conference on Neutrino Physics 2018, Heidelberg, Germany (2018). https://doi.org/10. 5281/zenodo.1301074
- Z. Qin, in Proceedings of International Conference on Technology and Instrumentation in Particle Physics 2017 (Springer, Singa- pore, 2018), pp. 285-293
- X.C. Lei et al., Evaluation of new large area PMT with high quantum efficiency. Chin. Phys. C 40(2), 026002 (2016). https:// doi.org/10.1088/1674-1137/40/2/026002. arXiv:1504.03174 [physics.ins-det]
- L.B. Bezrukov et al., Large area photodetectors for astroparticle physics Cherenkov arrays: PMTs vs. HPDs. Nucl. Instrum. Meth- ods A 639, 65-69 (2011). https://doi.org/10.1016/j.nima.2010.10. 013
- S. Yin et al., A novel PMT test system based on waveform sampling. JINST 13(01), T01005 (2018). https://doi.org/10.1088/ 1748-0221/13/01/T01005
- J. Xia et al., A performance evaluation system for photomul- tiplier tubes. JINST 10(03), P03023 (2015). https://doi.org/10. 1088/1748-0221/10/03/P03023
- A. Yang et al., The study of linearity and detection efficiency for 20" photomultiplier tube. Radiat. Detect. Technol. Methods 3, 11 (2019). https://doi.org/10.1007/s41605-018-0088-5
- H.Q. Zhang et al., Gain and charge response of 20" MCP and dynode PMTs. JINST 16(08), T08009 (2021). https://doi.org/10. 1088/1748-0221/16/08/T08009. arXiv:2103.14822 [physics.ins- det]
- H. Zhang et al., Study on relative collection efficiency of PMTs with spotlight. Radiat. Detect. Technol. Methods 3, 20 (2019). https://doi.org/10.1007/s41605-019-0099-x
- M.A. Unland Elorrieta et al., Characterisation of the Hamamatsu R12199-01 HA MOD photomultiplier tube for low temperature applications. JINST 14(03), P03015 (2019). https://doi.org/10. 1088/1748-0221/14/03/P03015. arXiv:1902.01714 [physics.ins- det]
- H.O. Meyer, Performance of a photomultiplier at liquid-helium temperature. Nucl. Instrum. Methods A 621(1-3), 437-442 (2010). https://doi.org/10.1016/j.nima.2010.05.048
- Hamamatsu Photonics K.K, Photomultiplier Tubes-Basics and Applications, 3rd edn. (Hamamatsu Photonics K.K., 2007). https://www.hamamatsu.com/resources/pdf/etd/PMT_ handbook_v3aE.pdf
- H. Li et al., Temperature effect on the performance of 20-inch PMTs. JINST 15(08), T08004 (2020). https://doi.org/10.1088/ 1748-0221/15/08/T08004
- K. Matsuoka et al., Extension of the MCP-PMT lifetime. Nucl. Instrum. Methods A 876, 93-95 (2017). https://doi.org/10.1016/ j.nima.2017.02.010
- A. Lehmann et al., Lifetime of MCP-PMTs and other performance features. JINST 13(02), C02010 (2018). https://doi.org/10.1088/ 1748-0221/13/02/C02010
- F. Uhlig et al., Performance studies of microchannel plate PMTs. Nucl. Instrum. Methods A 695, 68-70 (2012). https://doi.org/10. 1016/j.nima.2011.12.062
- G.A. Cowan et al., Characterisation and testing of a prototype 6 × 6 cm 2 Argonne MCP-PMT. Nucl. Instrum. Methods A 876, 80-83 (2017). https://doi.org/10.1016/j.nima.2017.01.071. arXiv:1611.00185 [physics.ins-det]
- D. van Eijk et al., Characterisation of two PMT models for the IceCube upgrade mDOM. PoS ICRC2019, 1022 (2020). https:// doi.org/10.22323/1.358.1022. arXiv:1908.08446 [astro-ph.IM]
- B.T. Fleming et al., Photomultiplier tube testing for the Mini- BooNE experiment. IEEE Trans. Nucl. Sci. 49, 984-988 (2002). https://doi.org/10.1109/TNS.2002.1039601
- C.R. Wuest et al., The IMB photomultiplier test facility. Nucl. Instrum. Methods A 239, 467-486 (1985). https://doi.org/10. 1016/0168-9002(85)90025-7
- G. Ranucci et al., Characterization and magnetic shielding of the large cathode area PMTs used for the light detection sys- tem of the prototype of the solar neutrino experiment Borexino. Nucl. Instrum. Methods A 337, 211-220 (1993). https://doi.org/ 10.1016/0168-9002(93)91156-H
- A. Brigatti et al., The photomultiplier tube testing facility for the Borexino experiment at LNGS. Nucl. Instrum. Methods A 537, 521-536 (2005). https://doi.org/10.1016/j.nima.2004.07. 248. arXiv:physics/0406106
- D. Liu, in 2008 IEEE Nuclear Science Symposium and Medical Imaging Conference and 16th International Workshop on Room- Temperature Semiconductor X-Ray and Gamma-Ray Detectors (2008), pp. 3133-3139. https://doi.org/10.1109/NSSMIC.2008. 4775017
- A. Baldini et al., The photomultiplier test facility for the reac- tor neutrino oscillation experiment CHOOZ and the measure- ments of 250 8-in. EMI 9356KA B53 photomultipliers. Nucl. Instrum. Methods A 372(1), 207-221 (1996). https://doi.org/10. 1016/0168-9002(95)01236-2
- C.J. Jillings et al., The photomultiplier tube testing facility for the Sudbury Neutrino Observatory. Nucl. Instrum. Methods A 373, 421-429 (1996). https://doi.org/10.1016/0168-9002(96)00067-8
- E. Calvo et al., Characterization of large area photomutipliers under low magnetic fields: design and performances of the mag- netic shielding for the Double Chooz neutrino experiment. Nucl. Instrum. Methods A 621, 222-230 (2010). https://doi.org/10. 1016/j.nima.2010.06.009. arXiv:0905.3246 [physics.ins-det]
- C. Bauer et al., Qualification tests of 474 photomultiplier tubes for the inner detector of the Double Chooz experiment. JINST 6, P06008 (2011). https://doi.org/10.1088/1748-0221/6/ 06/P06008. arXiv:1104.0758 [physics.ins-det]
- R. Bernabei et al., Performances of the new high quantum effi- ciency PMTs in DAMA/LIBRA. JINST 7, P03009 (2012). https:// doi.org/10.1088/1748-0221/7/03/P03009
- D. Barnhill et al., Testing of photomultiplier tubes for use in the surface detector of the Pierre Auger Observatory. Nucl. Instrum. Methods A 591, 453-466 (2008). https://doi.org/10.1016/j.nima. 2008.01.088
- K.H. Becker et al., Qualification tests of the 11000 photomulti- pliers for the Pierre Auger Observatory fluorescence detectors. Nucl. Instrum. Methods A 576, 301-311 (2007). https://doi.org/ 10.1016/j.nima.2007.03.007
- B. Kimelman, Testing and characterization of photomulti- plier tubes and the ANNIE forward anti-coincidence counter (2016). https://london.physics.ucdavis.edu/~reu/REU15/Papers/ kimelman.pdf
- Y. Huang et al., Performance of new 8-inch photomulti- plier tube used for the Tibet muon-detector array. JINST 11(06), P06016 (2016). https://doi.org/10.1088/1748-0221/11/ 06/P06016. arXiv:1603.00008 [physics.ins-det]
- X. Wang et al., Setup of a photomultiplier tube test bench for LHAASO-KM2A. Chin. Phys. C 40(8), 086003 (2016). https:// doi.org/10.1088/1674-1137/40/8/086003. arXiv:1512.02739 [physics.ins-det]
- K. Jiang et al., Qualification tests of 997 8-inch photomultiplier tubes for the water Cherenkov detector array of the LHAASO experiment. Nucl. Instrum. Methods A 995, 165108 (2021). https://doi.org/10.1016/j.nima.2021.165108. arXiv:2009.12742 [physics.ins-det]
- A. Suzuki, M. Mori, K. Kaneyuki, T. Tanimori, J. Takeuchi, H. Kyushima, Y. Ohashi, Improvement of 20 in. diameter pho- tomultiplier tubes. Nucl. Instrum. Methods Phys. Res. Sect. A: Accel. Spectrom. Detect. Assoc. Equip. 329(1), 299-313 (1993). https://doi.org/10.1016/0168-9002(93)90949-I. https:// www.sciencedirect.com/science/article/pii/016890029390949I
- C. Bronner et al., Development and performance of the 20" PMT for Hyper-Kamiokande. J. Phys. Conf. Ser. 1468(1), 012237 (2020). https://doi.org/10.1088/1742-6596/1468/1/012237
- Y. Nishimura, New large aperture photodetectors for water Cherenkov detectors. Nucl. Instrum. Methods A 958, 162993 (2020). https://doi.org/10.1016/j.nima.2019.162993
- C.M. Mollo, Development and performances of a high statistics PMT test facility. EPJ Web Conf. 116, 06010 (2016). https://doi. org/10.1051/epjconf/201611606010
- S. Aiello et al., Characterisation of the Hamamatsu photomultipli- ers for the KM3NeT Neutrino Telescope. JINST 13(05), P05035 (2018). https://doi.org/10.1088/1748-0221/13/05/P05035
- M. He, Double Calorimetry System in JUNO, in International conference on Technology and Instrumentation in Particle Physics (2017). arXiv:1706.08761
- C. Cao et al., Mass production and characterization of 3- inch PMTs for the JUNO experiment. Nucl. Instrum. Meth- ods A 1005, 165347 (2021). https://doi.org/10.1016/j.nima.2021. 165347. arXiv:2102.11538 [physics.ins-det]
- L. Wen et al., A quantitative approach to select PMTs for large detectors. Nucl. Instrum. Methods A 947, 162766 (2019). https://doi.org/10.1016/j.nima.2019.162766. arXiv:1903.12595 [physics.ins-det]
- Hamamatsu Photonics K.K. R12860 datasheet. https://www. hamamatsu.com/jp/en/product/type/R12860/index.html
- Y. Wang et al., A new design of large area MCP-PMT for the next generation neutrino experiment. Nucl. Instrum. Methods A 695, 113-117 (2012). https://doi.org/10.1016/j.nima.2011.12.085
- S. Liu et al., in 7th International Symposium on Advanced Optical Manufacturing and Testing Technologies: Optoelectronics Mate- rials and Devices for Sensing and Imaging, vol. 9284 (Proc. SPIE, 2014), pp. 1-10. https://doi.org/10.1117/12.2069902
- L. Ren et al., Study on the improvement of the 20-inch microchan- nel plate photomultiplier tubes for neutrino detector. Nucl. Instrum. Methods A 977, 164333 (2020). https://doi.org/10.1016/ j.nima.2020.164333
- N.N.V.T. Ltd., Specification for GDB-6201 microchannel plate type photomultiplier PMT (in Chinese). https://max.book118. com/html/2020/0214/70021251_52002115.shtm
- X. Zhang, Study on the large area MCP-PMT glass radioactivity reduction. JUNO Document 4359-v1
- F. Luo et al., PMT overshoot study for the JUNO prototype detec- tor. Chin. Phys. C 40(9), 096002 (2016). https://doi.org/10.1088/ 1674-1137/40/9/096002. arXiv:1602.06080 [physics.ins-det]
- F. Luo et al., Signal optimization with HV divider of MCP-PMT for JUNO. Springer Proc. Phys. 213, 309-314 (2018). https:// doi.org/10.1007/978-981-13-1316-5_58. arXiv:1803.03746 [physics.ins-det]
- A. Yang et al., Study and removal of the flash from the HV divider of the 20-inch PMT for JUNO. JINST 15(04), T04006 (2020). https://doi.org/10.1088/1748-0221/15/04/T04006 123 (2022) 82:1168
- Z. Wang et al., JUNO central detector and PMT system. PoS ICHEP2016, 457 (2016). https://pos.sissa.it/282/457/pdf
- B. Wonsak et al., A container-based facility for testing 20'000 20-inch PMTs for JUNO. JINST 16(08), T08001 (2021). https:// doi.org/10.1088/1748-0221/16/08/T08001. arXiv:2103.10193 [physics.ins-det]
- CAEN S.p.A., User Manual UM4279 -V1742/VX1742: 32+2 Channel 12bit 5 GS/s Switched Capacitor Digitizer, rev. 7 edn (CAEN S.p.A., Viareggio, 2017)
- HVSys Company, Light emitting diode sources of calibrated short light flashes (2013). http://hvsys.ru/images/data/news/10_small_ 1368803142.pdf
- N. Anfimov et al., Optimization of the light intensity for photodetector calibration. Nucl. Instrum. Methods A 939, 61-65 (2019). https://doi.org/10.1016/j.nima.2019.05.070. arXiv:1802.05437 [physics.ins-det]
- NKT Photonics, PILAS picosecond pulsed diode lasers (2019). https://www.nktphotonics.com/lasers-fibers/product/ pilas-picosecond-pulsed-diode-lasers/
- A. Tietzsch, Development, installation and operation of a container-based mass testing system for 20-inch photomultiplier tubes for JUNO. PhD Thesis, Eberhard Karls Universität Tübin- gen (2020). https://doi.org/10.15496/publikation-49875
- A. Tietzsch et al., The PMT mass testing system for JUNO. Zen- odo, in XXVIII International Conference on Neutrino Physics 2018, Heidelberg, Germany (2018). https://doi.org/10.5281/ zenodo.1300494
- N. Anfimov, Large photocathode 20-inch PMT testing methods for the JUNO experiment. JINST 12(06), C06017 (2017). https:// doi.org/10.1088/1748-0221/12/06/C06017. arXiv:1705.05012 [physics.ins-det]
- Paul Scherrer Institute, DRS4 Evaluation Board. https://www.psi. ch/drs/evaluation-board
- J. Wang et al., Database system for managing the 20,000 20-inch PMTs for JUNO. Nucl. Sci. Tech. 33, 24 (2022). https://doi.org/ 10.1007/s41365-022-01009-x
- T. Feder, Accident cripples Super-Kamiokande Neutrino Obser- vatory. Phys. Today 55(1), 22-22 (2002). https://doi.org/10.1063/ 1.1457255
- J.P. Cravens et al., Solar neutrino measurements in Super- Kamiokande-II. Phys. Rev. D 78, 032002 (2008). https://doi.org/ 10.1103/PhysRevD.78.032002
- R. Wendell et al., Atmospheric neutrino oscillation analysis with subleading effects in Super-Kamiokande I, II, and III. Phys. Rev. D 81, 092004 (2010). https://doi.org/10.1103/PhysRevD.81. 092004
- Z. Wang, JUNO PMT system and prototyping. J. Phys. Conf. Ser. 888(1), 012052 (2017). https://doi.org/10.1088/1742-6596/888/ 1/012052
- H.Q. Zhang et al., Comparison on PMT waveform reconstructions with JUNO prototype. JINST 14(08), T08002 (2019). https:// doi.org/10.1088/1748-0221/14/08/T08002. arXiv:1905.03648 [physics.ins-det]
- E.H. Bellamy et al., Absolute calibration and monitoring of a spectrometric channel using a photomultiplier. Nucl. Instrum. Methods A 339, 468-476 (1994). https://doi.org/10. 1016/0168-9002(94)90183-X
- R. Saldanha et al., Model independent approach to the single pho- toelectron calibration of photomultiplier tubes. Nucl. Instrum. Methods A 863, 35-46 (2017). https://doi.org/10.1016/j.nima. 2017.02.086. arXiv:1602.03150 [physics.ins-det]
- Q. Sen, The 20 inch MCP-PMT R&D in China, in CPAD Instrumentation Frontier Meeting 2016, Pasadena, CA, USA. https://indico.fnal.gov/event/24421/contributions/117408/ attachments/76143/91290/Qian_Sen_Slides.pdf
- Q. Sen et al., Status of the large area MCP-PMT in China. PoS ICHEP2016, 264 (2017). https://doi.org/10.22323/1.282.0264
- S. Qian et al., The improvement of 20" MCP-PMT for neu- trino detection. PoS ICHEP2018, 662 (2019). https://doi.org/10. 22323/1.340.0662
- CAEN S.p.A., Technical Information Manual-MOD. V895 series 16 Channel Leading Edge Discriminators, rev. 3 edn (CAEN S.p.A., Viareggio, 2009)
- S.O. Flyckt, C. Marmonier, Photomultiplier Tubes: Principles and Applications, 2nd edn. (Photonis, Brive, 2002)
- F. Gao et al., in IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC) 2017 (2017), pp. 1-5. https://doi. org/10.1109/NSSMIC.2017.8532598
- Keysight Technologies. Trueform 33512B Waveform Generator, 20 MHz, 2-Channel with Arb -Data Sheet (2020). https://www. keysight.com/de/de/assets/7018-05928/data-sheets/5992-2572. pdf
- D.H. Liao et al., Study of TTS for a 20-inch dynode PMT. Chin. Phys. C 41(7), 076001 (2017). https://doi.org/10.1088/ 1674-1137/41/7/076001
- U. Akgun et al., Afterpulse timing and rate investigation of three different Hamamatsu photomultiplier tubes. JINST 3, T01001 (2008). https://doi.org/10.1088/1748-0221/3/01/T01001
- K.J. Ma et al., Time and amplitude of afterpulse measured with a large size photomultiplier tube. Nucl. Instrum. Methods A 629, 93-100 (2011). https://doi.org/10.1016/j.nima.2010.11.095. arXiv:0911.5336 [physics.ins-det]
- Y. Chen, Measurements on the afterpulse of the 20-inch Pho- tomultiplier Tubes for the JUNO experiment, in XXIX Interna- tional Conference on Neutrino Physics 2020. https://nusoft.fnal. gov/nova/nu2020postersession/pdf/posterPDF-360.pdf
- I. Butorov, Large photocathode 20-inch PMT testing at the scan- ning station for the JUNO experiment, in XXIX International Con- ference on Neutrino Physics 2020. https://nusoft.fnal.gov/nova/ nu2020postersession/pdf/posterPDF-368.pdf
- T. Yonekura et al., Performance of the MCP-PMTs for the TOP counter in the Belle II experiment. PoS TIPP2014, 082 (2014). https://doi.org/10.22323/1.213.0082
- W.W. Wang et al., Aging behavior of large area MCP-PMT. Nucl. Sci. Tech. 27(2), 38 (2016). https://doi.org/10.1007/ s41365-016-0046-1
- K. Matsuoka et al., Extension of the MCP-PMT lifetime. Nucl. Instrum. Methods A 876, 93-95 (2017). https://doi.org/10.1016/ j.nima.2017.02.010
- A. Lehmann et al., Lifetime of MCP-PMTs and other performance features. JINST 13(02), C02010 (2018). https://doi.org/10.1088/ 1748-0221/13/02/C02010