Academia.eduAcademia.edu

Outline

Heteroclinic Ratchets in Networks of Coupled Oscillators

2009, Journal of Nonlinear Science

https://doi.org/10.1007/S00332-009-9053-2

Abstract

We study an unusual but robust phenomenon that appears in an example system of four coupled phase oscillators. The coupling is preserved under only one symmetry, but there are a number of invariant subspaces and degenerate bifurcations forced by the coupling structure, and we investigate these. We show that the system can have a robust attractor that responds to a specific detuning ∆ between certain pairs of the oscillators by a breaking of phase locking for arbitrary ∆ > 0 but not for ∆ ≤ 0. As the dynamical mechanism behind this is a particular type of heteroclinic network, we call this a 'heteroclinic ratchet' because of its dynamical resemblance to a mechanical ratchet.

References (30)

  1. M.A.D. Aguiar, P. Ashwin, A.P.S. Dias, and M. Field. Robust hete- roclinic cycles in coupled cell systems: identical cells with asymmetric inputs. preprint, 2008.
  2. M.A.D. Aguiar, A.P.S. Dias, M. Golubitsky, and M.C.A. Leite. Ho- mogenous coupled cell networks with S 3 -symmetric quotient. Disc. and Cont. Dyn. Sys. Supplement, pages 1-9, 2007.
  3. P. Ashwin and J. Borresen. Encoding via conjugate symmetries of slow oscillations for globally coupled oscillators. Phy. Rev. E, 70(2):026203, 2004.
  4. P. Ashwin and J. Borresen. Discrete computation using a perturbed heteroclinic network. Phy. Lett. A, 347(4-6):208-214, 2005.
  5. P. Ashwin, O. Burylko, and Y. Maistrenko. Bifurcation to heteroclinic cycles and sensitivity in three and four coupled phase oscillators. Phys. D: Non. Phe., 237:454-466, 2008.
  6. P. Ashwin, O. Burylko, Y. Maistrenko, and O. Popovych. Extreme sensitivity to detuning for globally coupled phase oscillators. Phy. Rev. Let., 96(5):054102, 2006.
  7. P. Ashwin, G. Orosz, and J. Borresen. Designing the dynamics of glob- ally coupled oscillators. preprint, 2008.
  8. P. Ashwin, G. Orosz, J. Wordsworth, and S. Townley. Dynamics on networks of clustered states for globally coupled phase oscillators. SIAM J. Appl. Dyn. Sys., 6(4):728-758, 2007.
  9. P. Ashwin and J.W. Swift. The dynamics of n weakly coupled identical oscillators. J. Nonlinear Sci., 2(1):69-108, 1992.
  10. F.H. Busse and R.M. Clever. Nonstationary convection in a rotating system. In U. Mller, K.G. Roesner, and B. Schmidt, editors, Recent Developments in Theoretical and Experimental Fluid Dynamics, pages 376-385. Springer Verlag, Berlin, 1979.
  11. G.B. Ermentrout. A Guide to XPPAUT for Researchers and Students. SIAM, Pittsburgh, 2002.
  12. M. Golubitsky and I. Stewart. The Symmetry Perspective. Birkhäuser Verlag, Basel, 2002.
  13. M. Golubitsky and I. Stewart. Nonlinear dynamics of networks: the groupoid formalism. Bull. Amer. Math. Soc. (N.S.), 43(3):305-364 (elec- tronic), 2006.
  14. J. Guckenheimer and P. Holmes. Structurally stable heteroclinic cycles. Math. Proc. Camb. Phil. Soc., 103:189-192, 1988.
  15. D. Hansel, G. Mato, and C. Meunier. Clustering and slow switching in globally couppled phase oscillators. Phy. Rev. E, 48(5):3470-3477, 1993.
  16. J. Hofbauer and K. Sigmund. Evolutionary Games and Population Dy- namics. Cambridge University Press, Cambridge, 1998.
  17. I.Z. Kiss, C.G. Rusin, H. Kori, and J.L. Hudson. Engineering com- plex dynamical structures: sequential patterns and desynchronization. Science, 316:1886-1889, 2007.
  18. H. Kori and Y. Kuramoto. Slow switching in globally coupled oscilla- tors: robustness and occurence through delayed coupling. Phy. Rev. E, 63(046214), 2001.
  19. M. Krupa. Robust heteroclinic cycles. J. Nonlinear Sci., 7(2):129-176, 1997.
  20. M. Krupa and I. Melbourne. Asymptotic stability of heteroclinic cycles in systemsd with symmetry. Erg. Th. Dyn. Sys., 15:121-147, 1995.
  21. Y. Kuramoto. Chemical Oscillations, Waves and Turbulence. Springer- Verlag, Berlin, 1984.
  22. R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii, and U. Alon. Network motifs: simple building blocks of complex networks. 298:824-827, 2002.
  23. M.I. Rabinovich, R. Huerta, P. Varona, and V.S. Afraimovich. Gener- ation and reshaping of sequences in neural systems. Bio. Cyb., 95:519- 536, 2006.
  24. M.I. Rabinovich, P. Varona, A.I. Selverston, and H.D.I. Abarbanel. Dy- namical principles in neuroscience. Rev. Mod. Phy., 95:519-536, 2006.
  25. H. Sakaguchi and Y. Kuramoto. A soluble active rotator model show- ing phase transitions via mutual entrainment. Progr. Theoret. Phys., 76(3):576-581, 1986.
  26. O Sporns and R. Ktter. Motifs in brain networks. PLoS Biol, 2(11):1910- 1918, 2004.
  27. Emily Stone and Philip Holmes. Random perturbations of heteroclinic attractors. SIAM J. Appl. Math., 50(3):726-743, 1990.
  28. S.H. Strogatz. From Kuramoto to Crawford: exploring the onset of synchronization in populations of coupled oscillators. Phys. D: Non. Phe., 143:1-20, 2000.
  29. Y.M. Zhai, I.Z. Kiss, H. Daido, and J.L. Hudson. Extracting order parameters from global measurements with application to coupled elec- trochemical oscillators. Phys. D: Non. Phe., 205:57-69, 2005.
  30. P.Z. Zhigulin. Dynamical motifs: building blocks of complex dynamics in sparsely connected random networks. Phy. Rev. Let., 92(23):238701, 2004.