Heteroclinic Ratchets in Networks of Coupled Oscillators
2009, Journal of Nonlinear Science
https://doi.org/10.1007/S00332-009-9053-2Abstract
We study an unusual but robust phenomenon that appears in an example system of four coupled phase oscillators. The coupling is preserved under only one symmetry, but there are a number of invariant subspaces and degenerate bifurcations forced by the coupling structure, and we investigate these. We show that the system can have a robust attractor that responds to a specific detuning ∆ between certain pairs of the oscillators by a breaking of phase locking for arbitrary ∆ > 0 but not for ∆ ≤ 0. As the dynamical mechanism behind this is a particular type of heteroclinic network, we call this a 'heteroclinic ratchet' because of its dynamical resemblance to a mechanical ratchet.
References (30)
- M.A.D. Aguiar, P. Ashwin, A.P.S. Dias, and M. Field. Robust hete- roclinic cycles in coupled cell systems: identical cells with asymmetric inputs. preprint, 2008.
- M.A.D. Aguiar, A.P.S. Dias, M. Golubitsky, and M.C.A. Leite. Ho- mogenous coupled cell networks with S 3 -symmetric quotient. Disc. and Cont. Dyn. Sys. Supplement, pages 1-9, 2007.
- P. Ashwin and J. Borresen. Encoding via conjugate symmetries of slow oscillations for globally coupled oscillators. Phy. Rev. E, 70(2):026203, 2004.
- P. Ashwin and J. Borresen. Discrete computation using a perturbed heteroclinic network. Phy. Lett. A, 347(4-6):208-214, 2005.
- P. Ashwin, O. Burylko, and Y. Maistrenko. Bifurcation to heteroclinic cycles and sensitivity in three and four coupled phase oscillators. Phys. D: Non. Phe., 237:454-466, 2008.
- P. Ashwin, O. Burylko, Y. Maistrenko, and O. Popovych. Extreme sensitivity to detuning for globally coupled phase oscillators. Phy. Rev. Let., 96(5):054102, 2006.
- P. Ashwin, G. Orosz, and J. Borresen. Designing the dynamics of glob- ally coupled oscillators. preprint, 2008.
- P. Ashwin, G. Orosz, J. Wordsworth, and S. Townley. Dynamics on networks of clustered states for globally coupled phase oscillators. SIAM J. Appl. Dyn. Sys., 6(4):728-758, 2007.
- P. Ashwin and J.W. Swift. The dynamics of n weakly coupled identical oscillators. J. Nonlinear Sci., 2(1):69-108, 1992.
- F.H. Busse and R.M. Clever. Nonstationary convection in a rotating system. In U. Mller, K.G. Roesner, and B. Schmidt, editors, Recent Developments in Theoretical and Experimental Fluid Dynamics, pages 376-385. Springer Verlag, Berlin, 1979.
- G.B. Ermentrout. A Guide to XPPAUT for Researchers and Students. SIAM, Pittsburgh, 2002.
- M. Golubitsky and I. Stewart. The Symmetry Perspective. Birkhäuser Verlag, Basel, 2002.
- M. Golubitsky and I. Stewart. Nonlinear dynamics of networks: the groupoid formalism. Bull. Amer. Math. Soc. (N.S.), 43(3):305-364 (elec- tronic), 2006.
- J. Guckenheimer and P. Holmes. Structurally stable heteroclinic cycles. Math. Proc. Camb. Phil. Soc., 103:189-192, 1988.
- D. Hansel, G. Mato, and C. Meunier. Clustering and slow switching in globally couppled phase oscillators. Phy. Rev. E, 48(5):3470-3477, 1993.
- J. Hofbauer and K. Sigmund. Evolutionary Games and Population Dy- namics. Cambridge University Press, Cambridge, 1998.
- I.Z. Kiss, C.G. Rusin, H. Kori, and J.L. Hudson. Engineering com- plex dynamical structures: sequential patterns and desynchronization. Science, 316:1886-1889, 2007.
- H. Kori and Y. Kuramoto. Slow switching in globally coupled oscilla- tors: robustness and occurence through delayed coupling. Phy. Rev. E, 63(046214), 2001.
- M. Krupa. Robust heteroclinic cycles. J. Nonlinear Sci., 7(2):129-176, 1997.
- M. Krupa and I. Melbourne. Asymptotic stability of heteroclinic cycles in systemsd with symmetry. Erg. Th. Dyn. Sys., 15:121-147, 1995.
- Y. Kuramoto. Chemical Oscillations, Waves and Turbulence. Springer- Verlag, Berlin, 1984.
- R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii, and U. Alon. Network motifs: simple building blocks of complex networks. 298:824-827, 2002.
- M.I. Rabinovich, R. Huerta, P. Varona, and V.S. Afraimovich. Gener- ation and reshaping of sequences in neural systems. Bio. Cyb., 95:519- 536, 2006.
- M.I. Rabinovich, P. Varona, A.I. Selverston, and H.D.I. Abarbanel. Dy- namical principles in neuroscience. Rev. Mod. Phy., 95:519-536, 2006.
- H. Sakaguchi and Y. Kuramoto. A soluble active rotator model show- ing phase transitions via mutual entrainment. Progr. Theoret. Phys., 76(3):576-581, 1986.
- O Sporns and R. Ktter. Motifs in brain networks. PLoS Biol, 2(11):1910- 1918, 2004.
- Emily Stone and Philip Holmes. Random perturbations of heteroclinic attractors. SIAM J. Appl. Math., 50(3):726-743, 1990.
- S.H. Strogatz. From Kuramoto to Crawford: exploring the onset of synchronization in populations of coupled oscillators. Phys. D: Non. Phe., 143:1-20, 2000.
- Y.M. Zhai, I.Z. Kiss, H. Daido, and J.L. Hudson. Extracting order parameters from global measurements with application to coupled elec- trochemical oscillators. Phys. D: Non. Phe., 205:57-69, 2005.
- P.Z. Zhigulin. Dynamical motifs: building blocks of complex dynamics in sparsely connected random networks. Phy. Rev. Let., 92(23):238701, 2004.