Abstract
Skin detectors play a crucial role in many applications: face localization, person tracking, objectionable content screening, etc. Skin detection is a complicated process that involves not only the development of apposite classifiers but also many ancillary methods, including techniques for data preprocessing and postprocessing. In this paper, a new postprocessing method is described that learns to select whether an image needs the application of various morphological sequences or a homogeneity function. The type of postprocessing method selected is learned based on categorizing the image into one of eleven predetermined classes. The novel postprocessing method presented here is evaluated on ten datasets recommended for fair comparisons that represent many skin detection applications. The results show that the new approach enhances the performance of the base classifiers and previous works based only on learning the most appropriate morphological sequences.
References (45)
- Chyad, M.A.; Alsattar, H.A.; Zaidan, B.B.; Zaidan, A.A.; Al Shafeey, G.A. The landscape of research on skin detectors: Coherent taxonomy, open challenges, motivations, recommendations and statistical analysis, future directions. IEEE Access 2019, 7, 106536-106575. [CrossRef]
- Naji, S.; Jalab, H.A.; Kareem, S.A. A survey on skin detection in colored images. Artif. Intell. Rev. 2018, 52, 1041-1087. [CrossRef]
- Kakumanu, P.; Makrogiannis, S.; Bourbakis, N. A survey of skin-color modeling and detection methods. Pattern Recognit. 2007, 40, 1106-1122. [CrossRef]
- Asari, V.K.; Seow, M.; Valaparla, D. Neural Network Based Skin Color Model for Face Detection. In Proceedings of the 2013 IEEE Applied Imagery Pattern Recognition Workshop (AIPR), Washington, DC, USA, 23-25 October 2003; p. 141.
- Khan, R.; Hanbury, A.; Stöttinger, J. Skin Detection: A Random Forest Approach. In Proceedings of the 2010 IEEE International Conference on Image Processing, Hong Kong, China, 26-29 September 2010; pp. 4613-4616.
- Sebe, N.; Cohen, I.; Huang, T.; Gevers, T. Skin Detection: A Bayesian Network Approach. In Proceedings of the 17th International Conference on Pattern Recognition, Cambridge, UK, 26 August 2004; pp. 903-906.
- Chakraborty, B.K.; Bhuyan, M.K. Image specific discriminative feature extraction for skin segmentation. Multimed. Tools Appl. 2020, 79, 18981-19004. [CrossRef]
- Poudel, R.P.; Zhang, J.J.; Liu, D.; Nait-Charif, H. Skin color detection using region-based approach. Int. J. Image Process. (IJIP) 2013, 7, 385.
- Chen, W.-C.; Wang, M.-S. Region-based and content adaptive skin detection in color images. Int. J. Pattern Recognit. Artif. Intell. 2007, 21, 831-853. [CrossRef]
- Xu, T.; Zhang, Z.; Wang, Y. Patch-wise skin segmentation of human body parts via deep neural networks. J. Electron. Imaging 2015, 24, 43009. [CrossRef]
- Zuo, H.; Fan, H.; Blasch, E.; Ling, H. Combining convolutional and recurrent neural networks for human skin detection. IEEE Signal Process. Lett. 2017, 24, 289-293. [CrossRef]
- Kim, Y.; Hwang, I.; Cho, N.I. Convolutional Neural Networks and Training Strategies for Skin Detection. In Proceedings of the 2017 IEEE International Conference on Image Processing (ICIP), Beijing, China, 17-20 September 2017; pp. 3919-3923.
- Lumini, A.; Nanni, L. Fair comparison of skin detection approaches on publicly available datasets. Expert Syst. Appl. 2020, 160, 113677. [CrossRef]
- Arsalan, M.; Kim, D.S.; Owais, M.; Park, K.R. OR-Skip-Net: Outer residual skip network for skin segmentation in non-ideal situations. Expert Syst. Appl. 2020, 141, 112922. [CrossRef]
- Tarasiewicz, T.; Nalepa, J.; Kawulok, M. Skinny: A Lightweight U-net for Skin Detection and Segmentation. In Proceedings of the 2020 IEEE International Conference on Image Processing (ICIP), Abu Dhabi, United Arab Emirates, 25-28 October 2020; pp. 2386-2390.
- Paracchini, M.; Marcon, M.; Villa, F.; Tubaro, S. Deep skin detection on low resolution grayscale images. Pattern Recognit. Lett. 2020, 131, 322-328. [CrossRef]
- Dourado, A.; Guth, F.; de Campos, T.E.; Weigang, L. Domain adaptation for holistic skin detection. arXiv 2020, arXiv:1903.06969. Available online: https://arxiv.org/abs/1903.06969 (accessed on 30 May 2021).
- Ma, C.-H.; Shih, H.-C. Human Skin Segmentation Using Fully Convolutional Neural Networks. In Proceedings of the 2018 IEEE 7th Global Conference on Consumer Electronics (GCCE), Nara, Japan, 9-12 October 2018; pp. 168-170.
- Yong-Jia, Z.; Shu-Ling, D.; Xiao, X. A Mumford-Shah Level-Set Approach for Skin Segmentation Using a New Color Space. In Proceedings of the 2008 Asia Simulation Conference-7th International Conference on System Simulation and Scientific Computing, Beijing, China, 10-12 October 2008; pp. 307-310.
- Kawulok, M. Energy-based blob analysis for improving precision of skin segmentation. Multimed. Tools Appl. 2010, 49, 463-481.
- Lumini, A.; Nanni, L.; Codogno, A.; Berno, F. Learning morphological operators for skin detection. J. Artif. Intell. Syst. 2019, 1, 60-76. [CrossRef]
- Franchi, G.; Fehri, A.; Yao, A. Deep morphological networks. Pattern Recognit. 2020, 102, 107246. [CrossRef]
- Nogueira, K.; Chanussot, J.; Mura, M.D.; Schwartz, W.R.; dos Santos, J.A. An introduction to deep morphological networks. arXiv 2019, arXiv:1906.01751. Available online: https://arxiv.org/abs/1906.01751 (accessed on 30 May 2021).
- Song, W.; Zheng, N.; Zheng, R.; Zhao, X.B.; Wang, A. Digital image semantic segmentation algorithms: A survey. J. Inf. Hiding Multimed. Signal Process. 2019, 10, 196-211.
- Long, J.; Shelhamer, E.; Darrell, T. Fully Convolutional Networks for Semantic Segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7-12 June 2015; pp. 3431-3440.
- Badrinarayanan, V.; Kendall, A.; Cipolla, R. SegNet: A deep convolutional encoder-decoder architecture for image segmenta-tion. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 2481-2495. [CrossRef]
- Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556. Available online: https://arxiv.org/abs/1409.1556 (accessed on 30 May 2021).
- Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional Networks for Biomedical Image Segmentation. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Germany, 5-9 October 2015; pp. 234-241.
- Nanni, L.; Lumini, A.; Ghidoni, S.; Maguolo, G. Stochastic selection of activation layers for convolutional neural networks. Sensors 2020, 20, 1626. [CrossRef] [PubMed]
- Chen, L.-C.; Zhu, Y.; Papandreou, G.; Schroff, F.; Adam, H. Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation. In Proceedings of the European Conference on Computer Vision-ECCV 2018, Munich, Germany, 8-14 September 2018.
- Chen, L.-C.; Papandreou, G.; Schroff, F.; Adam, H. Rethinking atrous convolution for semantic image segmentation. arXiv 2017, arXiv:1706.05587. Available online: https://arxiv.org/abs/1706.05587 (accessed on 30 May 2021).
- Holschneider, M.; Kronland-Martinet, R.; Morlet, J.; Tchamitchian, P. A real-time algorithm for signal analysis with the help of the wavelet transform. In Wavelets Time-Frequency Methods and Phase Space; Springer: Berlin/Heidelberg, Germany, 1989.
- Maguolo, G.; Nanni, L.; Ghidoni, S. Ensemble of convolutional neural networks trained with different activation functions. Expert Syst. Appl. 2021, 166, 114048. [CrossRef]
- Otsu, N. A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 1979, 9, 62-66. [CrossRef]
- Gonzalez, R.C.; Woods, R.E. Digital Image Processing, 2nd ed.; Addison-Wesley Longman Publishing Co., Inc.: Boston, MA, USA, 2001.
- Phung, S.; Bouzerdoum, A.; Chai, D. Skin segmentation using color pixel classification: Analysis and comparison. IEEE Trans. Pattern Anal. Mach. Intell. 2005, 27, 148-154. [CrossRef]
- Jones, M.; Rehg, J. Statistical Color Models with Application to Skin Detection. In Proceedings of the 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Fort Collins, CO, USA, 23-25 June 1999.
- Ruiz-Del-Solar, J.; Verschae, R. Skin Detection Using Neighborhood Information. In Proceedings of the Sixth IEEE International Conference on Automatic Face and Gesture Recognition, Seoul, Korea, 19 May 2004; pp. 463-468.
- Schmugge, S.J.; Jayaram, S.; Shin, M.C.; Tsap, L.V. Objective evaluation of approaches of skin detection using ROC analysis. Comput. Vis. Image Underst. 2007, 108, 41-51. [CrossRef]
- Stöttinger, J.; Hanbury, A.; Liensberger, C.; Khan, R. Skin Paths for Contextual Flagging Adult Videos. In Proceedings of the International Symposium on Visual Computing, Las Vegas, NV, USA, 30 November-2 December 2009.
- SanMiguel, J.C.; Suja, S. Skin detection by dual maximization of detectors agreement for video monitoring. Pattern Recognit. Lett. 2013, 34, 2102-2109. [CrossRef]
- Casati, J.P.B.; Moraes, D.R.; Rrodrigues, E.L.L. SFA: A Human Skin Image Database Based on FERET and AR Facial Images. In Proceedings of the IX Workshop de Visão Computacional, Anais do VIII Workshop de Visão Computacional, Rio de Janeiro, Brazil, 3-5 June 2013.
- Tan, W.R.; Chan, C.S.; Yogarajah, P.; Condell, J. A fusion approach for efficient human skin detection. IEEE Trans. Ind. Inform. 2011, 8, 138-147. [CrossRef]
- Kawulok, M.; Kawulok, J.; Nalepa, J.; Smolka, B. Self-adaptive algorithm for segmenting skin regions. EURASIP J. Adv. Signal Process. 2014, 2014, 1-22. [CrossRef]
- Mellouli, D.; Hamdani, T.M.; Sanchez-Medina, J.J.; Ben Ayed, M.; Alimi, A.M. Morphological convolutional neural network architecture for digit recognition. IEEE Trans. Neural Netw. Learn. Syst. 2019, 30, 2876-2885. [CrossRef]