Academia.eduAcademia.edu

Outline

Algorithm 467: matrix transposition in place [F1]

1973, Communications of the ACM

Abstract

This algorithm uses a rational variant of the QR transformation with explicit shift for the computation of all of the eigenvalues of a real, symmetric, and tridiagonal matrix. Details are described in Ill. Procedures tredl or tred3 published in [2] may be used to reduce any real, symmetric matrix to tridiagonal form. Turn the matrix end-for-end if necessary to bring very large entries to the bottom right-hand corner.

References (18)

  1. Reinsch, C.H. A stable, rational QR algorithm for the com- putation of the eigenvalues of an Hermitian, tridiagonal matrix. Math. Comp. 25 (1971), 591-597.
  2. Martin, R.S., Reinseh, C.H., Wilkinson, J. H. Householder's tridiagonalization of a symmetric matrix. Numer. Math. 11 (1968), 181-195.
  3. Johnson, S.N. Generation of permutations by adjacent transformations. Math. Comp. 17 (1963), 282-285.
  4. Trotter, H.F. Algorithm 115, Perm. Comm ACM 5 (Aug. 1962), pp. 434-435.
  5. Ehrlicb, G., Loopless algorithms for generation permutations combinations and other combinatorial configurations. J. ACM 20 (July 1973), 500-513.
  6. Windley, P.F. Transposing matrices in a digital computer. Comp. J. 2 (Apr. 1959), 47-48.
  7. Boothroyd, J. Algorithm 302, Transpose vector stored array. Comm. ACM 10 (May 1967), 292-293.
  8. Laflin, S., and Brebner, M.A. Algorithm 380: In-situ transposition of a rectangular matrix. Comm. ACM 13 (May 1970), 324-326.
  9. Bolker, E. An bttroduction to Number Theory: An Algebraic Approach. Benjamin, New York, 1970. References
  10. Patterson, T.N.L. The optimum addition of points to quad- rature formulae. Math. Comp. 22 (1968), 847-856.
  11. Cranley, R., and Patterson, T.N.L. On the automatic numeri- cal evaluation of definite integrals. Comp. J., 14 (1971), 189-198.
  12. Lyness, J.N. Algorithm 379, SQUANK. Comm. ACM 13 (Apr. 1970), 260-263.
  13. Wallick, G.C. Algorithm 400, Modified Havie integration. Comm. ACM 13 (Oct. 1970), 622-624.
  14. de Boor, Carl. CADRE: An algorithm for numerical quadrature. Mathematical Software. J.R. Rice (Ed.) Academic Press, New York, 1971, pp. 417-449.
  15. Thacher, H.C. Jr. Remark on Algorithm 60, Comm. ACM (July, 1964), 420-421.
  16. Alanen, A.J., and Knuth, D.E. Tables of finite fields. Sankhy6- (A) 26 (1964), 305-328.
  17. Cannon, J.J. Ph.D. Th., 1967 U. of Sydney, Sydney, Australia.
  18. Conway, J.H., and Guy, M.J.T. Information on finite fields. In Computers in Mathematical Research. North-Holland Pub. Co., Amsterdam, 1967.