Modelling spatial dependence in an irregular natural forest
2008, Silva Fennica
https://doi.org/10.14214/SF.262Abstract
The spatial dependence present in a natural stand of Eucalyptus pilularis (Smith) dominated mixed species forest was characterised and modelled. Two wildfires imposed a significant spatial dependence on the post disturbance stand. It was hypothesised that spatial variation in the intensity of the wildfires generated the observed structures. The influence of patch formation, micro-site variability and competitive influences were also noted in the residuals of a distance-dependent individual-tree growth model. A methodology capable of modelling these complicated patterns of observed dependence was sought, and candidates included the spatial interaction, direct specification and Papadakis methods. The spatial interaction method with a moving average autoregression was identified as the most appropriate method for explicitly modelling spatial dependence. Both the direct specification and Papadakis methods failed to capture the influence of competition. This study highlights the possibil...
References (56)
- Anselin, L. & Kelejian, H.H. 1997. Testing for spatial autocorrelation in the presence of endogeneous regressors. International Regional Science Review 20: 153-182.
- Bartlett, M.S. 1978. Nearest neighbour models in the analysis of field experiments. Journal of the Statis- tical Society of London B 40: 147-174.
- Besag, J. 1974. Spatial interaction and the statistical analysis of lattice systems. Journal of the Statistical Society of London B. 36: 192-236.
- Biondi, F., Myers, D.E. & Avery, C.C. 1994. Geostatis- tically modelling stem size and increment in an old growth forest. Canadian Journal of Forest Research 24: 1354-1368.
- Cliff, A.D. & Ord, J.K. 1972. Testing for spatial auto- correlation among regression residuals. Geographi- cal analysis 4: 267-284.
- -& Ord, J.K. 1981. Spatial processes; models and applications. Pion Limited, Great Britain, London.
- Cressie, N. 1986. Kriging nonstationary data. Jour- nal of The American Statistical Association 81: 625-634.
- -1993. Statistics for spatial data. John Wiley & Sons, New York.
- -& Hartfield, M.N. 1996. Conditionally specified Gaussian models for spatial statistical analysis of field trials. Journal of Agricultural, Biological, and Environmental Statistics 1: 60-77.
- Dennis, B., Brown, B.E., Stage, A.R., Burkhart, H.E. & Clark, S. 1985. Problems of modeling growth and yield of renewable resources. American Statistician 39: 374-383.
- Epperson, B.K. & Allard, R.W. 1989. Spatial autocor- relation analysis of the distribution of genotypes within populations of lodgepole pine. Genetics 121: 369-377.
- Fajardo, A. & McIntire, E.J.B. 2007. Distinguishing microsite and competition processes in tree growth dynamics: an a priori spatial modelling approach. The American Naturalist 169: 5.
- Florence, R.G. 1996. Ecology and silviculture of Eucalypt forests. CSIRO Publishing, Victoria, Australia.
- Fox, J.C., 2000. Spatial dependence and individual-tree growth models in Eucalyptus pilularis (Smith). Unpublished Ph.D. thesis, University of Mel- bourne, Australia.
- -, Ades, P.K. & Bi, H. 2001. Stochastic structure and individual-tree growth models. Forest Ecology and Management 154: 261-276.
- -, Bi, H. & Ades, P.K. 2007a. Spatial dependence and individual-tree growth models I: characterising spatial dependence. Forest Ecology and Manage- ment 245: 10-19.
- -, Bi, H. & Ades, P.K. 2007b. Spatial dependence and individual-tree growth models II: modelling spatial dependence. Forest Ecology and Manage- ment 245: 20-30.
- Garcia, O. 1992. What is a diameter distribution? In: Minowa, M. & Tsuyuki, S. (eds.). Proceedings of the Symposium on Integrated Forest Manage- ment Information Systems -an International Sym- posium. Japan Society of Forest Planning Press, Tokyo, Japan. p. 11-29.
- -2006. Scale and spatial structure effects on tree size distributions: implications for growth and yield modeling. Canadian Journal of Forest Research 36: 2983-2993.
- Geburek, T. 1993. Are genes randomly distributed over space in mature populations of sugar maple (Acer saccharum Marsh)? Annals of Botany 71: 217-222.
- -& Tripp-Knowles, P. 1994. Spatial stand struc- ture of sugar maple (Acer saccharum Marsh.) in Ontario, Canada. Phyton-Horn 34: 267-278.
- Glover, G.R. & Hool, J.N. 1979. A basal area predictor of loblolly pine plantation mortality. Forest Science 25: 275-282.
- Gregoire, T.G., Schabenberger, O. & Barrett, J.P. 1995. Linear modelling of irregularly spaced, unbalanced, longitudinal data from permanent-plot measure- ments. Canadian Journal of Forest Research 25: 137-156.
- Haining, R.P. 1978. The moving average model for spa- tial interaction. Transactions and papers, Institute of British Geographers 3: 202-225.
- Henry, J.L. 1955. Sustained yield management of hardwood forests in New South Wales. Australian Forestry 19: 45-58.
- Kaluzny, S.P., Vega, S.C., Cardoso, T.P. & Shelly, A. 1997. S+Spatial Stats: user's manual for windows and Unix. Springer, New York.
- Kenkel, N.C., Hendrie, M.L. & Bella, I.E. 1997. A long term study of Pinus banksiana population dynam- ics. Journal of Vegetation Science 8: 241-254.
- -, Hoskins, J.A. & Hoskins, W.D. 1989. Local com- petition in a naturally established jack pine stand. Canadian Journal of Botany 67: 2630-2635.
- Knowles, P. 1991. Spatial genetic structure within two natural stands of black spruce (Picea mariana (Mill.) B.S.P.). Silvae Genetica 40: 13-19.
- Kuuluvainen, T., Penttinen, A., Leinonen, K. & Nygren, M. 1996. Statistical opportunities for comparing stand structural heterogeneity in managed and pri- meval forests: an example from boreal spruce forest in southern finland. Silva Fennica 30: 315-328.
- -, Järvinen, E., Hokkanen, T.J., Rouvinen, S. & Heikkinen, K. 1998. Structural heterogeneity and spatial autocorrelation in a natural mature Pinus sylvestris dominated forest. Ecography 21: 159- 174.
- Leonardi, S., Raddi, S. & Borghetti, M. 1996. Spa- tial autocorrelation of allozyme traits in Norway spruce (Picea abies) population. Canadian Journal of Forest Research 26: 63-71.
- Magnussen, S. 1994. A method to adjust simultaneously for spatial microsite and competition effects. Cana- dian Journal of Forest Research 24: 985-995.
- Mardia, K.V. 1990. Maximum likelihood estimation for spatial models. In: Griffith, D.A. (ed.). Spatial statistics: past present and future. Institute of Math- ematical Geography, Ann Arbor, MI. p. 203-253.
- -& Marshall, R.J. 1984. Maximum likelihood esti- mation of models for residual covariance in spatial regression. Biometrika 71: 135-146.
- Matern, B. 1960. Spatial variation. Meddelanden från statens skogsforskningsinstitut 49(5) [Second edi- tion -1986, Lecture Notes in Statistics 36, Springer, New York.]
- Miller, C. & Urban, D.L. 1999. Interactions between forest heterogeneity and surface fire regimes in the southern Sierra Nevada. Canadian Journal of Forest Research 29: 202-212.
- Monserud, R.A. & Ek, A.R. 1974. Plot edge bias in forest stand growth simulation models. Canadian Journal of Forest Research 4: 419-423.
- Moran, P.A.P. 1950. Notes on continuous stochastic phenomena. Biometrika 37: 17-23.
- Nance, W.L., Grissom, J.E. & Smith, W.R. 1987. A new competition index based on weighted and constrained area polygon available. In: Ek, A.R., Shifley, S.R. & Burk, T.E. (eds.). Forest growth modelling and prediction. USDA Forest Service, General Technical Report NC-120. p.134-142.
- Papadakis, J.S. 1937. Méthode statistique pour des expériences sur champ. Bulletin de Institute d'Amelioration des Plantes a Saloique, Tessalo- nique 23.
- -1984. Advances in the analysis of field experi- ments. Proceedings of the Academy of Athens 59: 326-342.
- Penttinen, A., Stoyan, D. & Henttonen, H.M. 1992. Marked point processes in forest statistics. Forest Science 38: 806-824.
- Preisler, H.K. 1993. Modelling spatial patterns of trees attacked by bark-beetles. Applied Statististics 42: 501-514.
- -, Rappaport, N.G. & Wood, D.L. 1997. Regression methods for spatially correlated data: an example using beetle attacks in a seed orchard. Forest Sci- ence 43: 71-77.
- Ripley, B.D. 1981. Spatial statistics. Wiley, New York.
- Sakai, A.K. & Oden, N.L. 1983. Spatial pattern of sex expression in silver maple (Acer saccharinum L.): Morisita's index and spatial autocorrelation. The American Naturalist 122: 489-508.
- Samra, J.S., Richter, J., Gill, H.S. & Anlauf, R., 1990. Spatial dependence of soil sodicity and tree growth in a Natric Haplustalf. Soil Science Society of America Journal 54: 1228-1233.
- SAS Institute, Inc. 1996. SAS/STAT Software: Changes and Enhancements through Release 6.11, SAS Institute Inc., Cary, NC.
- Taye, G. & Njuho, P. 2007. An improvement on the Papadakis Covariate to account for spatial varia- tion. Journal of Agricultural, Biological, and Envi- ronmental Statistics 12: 397-413.
- Tomppo, E. 1986. Models and methods for analysing spatial patterns of trees. Communicationes Instituti Forestalis Fenniae 138. 65 p.
- Whittle, P. 1954. On stationary processes in the plane. Biometrika 41: 434-449.
- Williams, J.E., Whelon, R.J. & Gill, A.M. 1994. Fire and environmental heterogeneity in southern tem- perate forest ecosystems: implications for manage- ment. Australian Journal of Botany 42: 125-137.
- Xie, C.Y. & Knowles, P. 1991. Spatial genetic sub- structure within natural populations of jack pine (Pinus banksiana). Canadian Journal of Botany 69: 547-551.
- Zhang, L., Bi, H., Cheng, P. & Davis, C. J. 2004. Modelling spatial variation in tree diameter-height relationships. Forest Ecology and Management 189: 317-329.
- Zimmerman, D.L. & Harville, D.A. 1991. A random field approach to the analysis of field-plot experi- ments and other spatial experiments. Biometrics 47: 223-239.