Academia.eduAcademia.edu

Outline

Quantization of a Free Particle in Toric Geometry

Abstract

The Hamilton-Jacobi method for constrained systems is discussed. The equations of motion for a free particle constrained to move on the surface of a torus are obtained without using any gauge-fixing conditions. The quantization of this model is also discussed.

References (19)

  1. P. A. M. Dirac, "Generalized Hamiltonian dynamics," Canadian Journal of Mathematics, vol. 2, pp. 129-148, 1950.
  2. P. A. M. Dirac, Lectures on Quantum Mechanics, Belfer Graduate School of Science, Yeshiva University, Academic Press, New York, 1964.
  3. Henneaux, M., & Teitelboim, C. (2018). Quantization of Gauge Systems. Princeton University Press.
  4. S. P. Gavrilov and D. M. Gitman, "Quantization of systems with time- dependent constraints. Example of a relativistic particle in a plane wave," Classical and Quantum Gravity, vol. 10, p. 57, 1993.
  5. Y. Güler, "Canonical Formulation of Constrained Systems," Nuovo Ci- mento B, vol. 107, p. 1389, 1992.
  6. Y. Güler, "Integration of Singular Systems," Nuovo Cimento B, vol. 107, p. 1143, 1992.
  7. A. Hanson, T. Regge, and C. Teitelboim, Constrained Hamiltonian Sys- tems, Accademia Nazionale dei Lincei, Rome, 1976.
  8. R. Kumar, "Europhys. Lett.," vol. 106, p. 51001, 2014; Erratum in: Euro- phys. Lett., vol. 108, p. 59902, 2014.
  9. García-Compeán, H., et al. (2021). JHEP, 03, 1-30.
  10. Bouatta, N., & Gualtieri, L. (2022). Journal of Geometry and Physics, 171, 104415.
  11. Cariglia, M. (2022). Journal of Mathematical Physics, 63, 032901.
  12. Barvinsky, A. O. (2017). Physics Reports, 711, 1-58.
  13. S. I. Muslih, "Path integral formulation of constrained systems," Hadronic Journal, vol. 23, p. 203, 2000.
  14. Mignemi, S. (2023). Physical Review D, 107, 045005.
  15. S. I. Muslih, "Canonical quantization of systems with time-dependent con- straints," Czech Journal of Physics, vol. 52, p. 919, 2002.
  16. S. I. Muslih and Y. Güler, "Hamilton-Jacobi formulation for constrained systems," Nuovo Cimento B, vol. 113, pp. 277-286, 1998.
  17. T. Eleyan, "The Hamilton-Jacobi Treatment of Complex Fields as Con- strained Systems," An-Najah University Journal for Research (N. Sec.), vol. 21, 2007.
  18. L. D. Faddeev, "The Feynman integral for singular Lagrangians," Theoret- ical and Mathematical Physics, vol. 1, pp. 1-13, 1970.
  19. L. D. Faddeev and V. N. Popov, "Feynman diagrams for the Yang-Mills field," Physics Letters B, vol. 25, no. 1, pp. 29-30, 1967.