Ferroelectric domain architecture and poling of BaTiO3 on Si
2020, Physical Review Materials
https://doi.org/10.1103/PHYSREVMATERIALS.4.034406Abstract
We investigate the ferroelectric domain architecture and its operando response to an external electric field in BaTiO 3 -based electro-optic heterostructures integrated on silicon. By non-invasive optical second harmonic generation we identify the preexistence of in-plane-(a-) domains dispersed within a predominantly out-of-plane-(c-) oriented matrix. Monitoring the poling behavior of the respective domain populations, we show that the spontaneous polarization of these a-domains lack a predominant orientation in the pristine state, yet can be selectively aligned with an in-plane electric-field, leaving the c-domain population intact. Hence, domain reorientation of a ferroelastic c-to-a-type was directly excluded. Such independent electrical control of ferroelectric a-domains in a c-oriented BaTiO 3 film on silicon is a valuable platform for engineering multidirectional electrooptic functionality in integrated photonic devices.
References (36)
- N. Setter, D. Damjanovic, L. Eng, G. Fox, S. Gevorgian, S. Hong, A. Kingon, H. Kohlstedt, N. Y. Park, G. B. Stephenson, I. Stolitchnov, A. K. Taganstev, D. V. Taylor, T. Yamada, and S. Streiffer, J. Appl. Phys. 100, 051606 (2006).
- J. F. Scott, Science 315, 954 (2007).
- E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, IEEE J. Sel. Top. Quantum Electron. 6, 69 (2000).
- A. Politi, J. C. Matthews, M. G. Thompson, and J. L. O'Brien, IEEE J. Sel. Top. Quantum Electron. 15, 1673 (2009).
- C. Xiong, W. H. Pernice, J. H. Ngai, J. W. Reiner, D. Kumah, F. J. Walker, C. H. Ahn, and H. X. Tang, Nano Lett. 14, 1419 (2014).
- S. Abel, F. Eltes, J. E. Ortmann, A. Messner, P. Castera, T. Wagner, D. Urbonas, A. Rosa, A. M. Gutierrez, D. Tulli, et al., Nat. Mater. 18, 42 (2019).
- S. Abel, T. Stöferle, C. Marchiori, C. Rossel, M. D. Rossell, R. Erni, D. Caimi, M. Sousa, A. Chelnokov, B. J. Offrein, and J. Fompeyrine, Nat. Commun. 4, 1671 (2013).
- F. Eltes, C. Mai, D. Caimi, M. Kroh, Y. Popoff, G. Winzer, D. Petousi, S. Lischke, J. E. Ortmann, L. Czornomaz, L. Zimmermann, J. Fompeyrine, and S. Abel, J. Light. Technol. 37, 1456 (2019).
- J. Wang, F. Sciarrino, A. Laing, and M. G. Thompson, Nat. Photonics (2019), 10.1038/s41566-019-0532-1.
- J. Lyu, I. Fina, R. Solanas, J. Fontcuberta, and F. Sánchez, Sci. Rep. 8, 495 (2018).
- M. Scigaj, C. H. Chao, J. Gázquez, I. Fina, R. Moalla, G. Saint-Girons, M. F. Chisholm, G. Herranz, J. Fontcuberta, R. Bachelet, and F. Sánchez, Appl. Phys. Lett. 109, 122903 (2016).
- M. Scigaj, N. Dix, J. Gázquez, M. Varela, I. Fina, N. Domingo, G. Herranz, V. Skumryev, J. Fontcuberta, and F. Sánchez, Sci. Rep. 6, 31870 (2016).
- Y. L. Li and L. Q. Chen, Appl. Phys. Lett. 88, 072905 (2006).
- K. J. Kormondy, Y. Popoff, M. Sousa, F. Eltes, D. Caimi, M. D. Rossell, M. Fiebig, P. Hoff- mann, C. Marchiori, M. Reinke, et al., Nanotechnology 28, 075706 (2017).
- C. Dubourdieu, J. Bruley, T. M. Arruda, A. Posadas, J. Jordan-Sweet, M. M. Frank, E. Cartier, D. J. Frank, S. V. Kalinin, A. A. Demkov, and V. Narayanan, Nat. Nanotechnol. 8, 748 (2013).
- Z. Li, X. Guo, H.-B. Lu, Z. Zhang, D. Song, S. Cheng, M. Bosman, J. Zhu, Z. Dong, and W. Zhu, Adv. Mater. 26, 7185 (2014).
- R. Guo, Z. Wang, S. Zeng, K. Han, L. Huang, D. G. Schlom, T. Venkatesan, Ariando, and J. Chen, Sci. Rep. 5, 12576 (2015).
- S. M. Yang, A. N. Morozovska, R. Kumar, E. A. Eliseev, Y. Cao, L. Mazet, N. Balke, S. Jesse, R. K. Vasudevan, C. Dubourdieu, and S. V. Kalinin, Nat. Phys. 13, 812 (2017).
- M. Fiebig, V. V. Pavlov, and R. V. Pisarev, J. Opt. Soc. Am. B 22, 96 (2005).
- S. A. Denev, T. T. A. Lummen, E. Barnes, A. Kumar, and V. Gopalan, J. Am. Ceram. Soc. 94, 2699 (2011).
- G. De Luca, M. D. Rossell, J. Schaab, N. Viart, M. Fiebig, and M. Trassin, Adv. Mater. 29, 1605145 (2017).
- G. De Luca, N. Strkalj, S. Manz, C. Bouillet, M. Fiebig, and M. Trassin, Nat. Commun. 8, 1419 (2017).
- N. Strkalj, G. De Luca, M. Campanini, S. Pal, J. Schaab, C. Gattinoni, N. A. Spaldin, M. D. Rossell, M. Fiebig, and M. Trassin, Phys. Rev. Lett. 123, 147601 (2019).
- J. Nordlander, M. Campanini, M. D. Rossell, R. P. Erni, Q. N. Meier, A. Cano, N. A. Spaldin, M. Fiebig, and M. Trassin, Nat. Commun. 10, 5591 (2019).
- J. Nordlander, G. De Luca, N. Strkalj, M. Fiebig, and M. Trassin, Appl. Sci. 8, 570 (2018).
- G. De Luca, P. Schoenherr, J. Mendil, D. Meier, M. Fiebig, and M. Trassin, Phys. Rev. Appl. 10, 054030 (2018).
- N. Strkalj, E. Gradauskaite, J. Nordlander, and M. Trassin, Materials 12, 3108 (2019).
- R. R. Birss, Symmetry and magnetism, Vol. 863 (North-Holland Pub. Co., 1964).
- H. Yokota, J. Kaneshiro, and Y. Uesu, Phys. Res. Int. 2012, 704634 (2012).
- Y. Shen, The principles of nonlinear optics, Wiley classics library (Wiley-Interscience, 2003).
- T. H. E. Lahtinen, K. J. A. Franke, and S. van Dijken, Sci. Rep. 2, 258 (2012).
- A. I. Khan, X. Marti, C. Serrao, R. Ramesh, and S. Salahuddin, Nano Lett. 15, 2229 (2015).
- P. Gao, J. Britson, C. T. Nelson, J. R. Jokisaari, C. Duan, M. Trassin, S.-H. Baek, H. Guo, L. Li, Y. Wang, Y.-H. Chu, A. M. Minor, C.-B. Eom, R. Ramesh, L.-Q. Chen, and X. Pan, Nat. Commun. 5, 3801 (2014).
- Our simulations, using bulk BTO values for χ (2) , indicate relative SHG contributions a 1 : a 2 : c = 0 : 0 : 1 before poling, and a 1 : a 2 : c = 0.255 : 0.255 : 1 after poling.
- The estimated volume fraction of a-domains is relative to the total c-SHG yield. The pres- ence of c-domains of either orientation would reduce the c-SHG yield because of destructive interference between SHG contributions from P up and P down .
- B.-K. Lai, I. Ponomareva, I. A. Kornev, L. Bellaiche, and G. J. Salamo, Phys. Rev. B 75, 085412 (2007).