Academia.eduAcademia.edu

Outline

Ferroelectric domain architecture and poling of BaTiO3 on Si

2020, Physical Review Materials

https://doi.org/10.1103/PHYSREVMATERIALS.4.034406

Abstract

We investigate the ferroelectric domain architecture and its operando response to an external electric field in BaTiO 3 -based electro-optic heterostructures integrated on silicon. By non-invasive optical second harmonic generation we identify the preexistence of in-plane-(a-) domains dispersed within a predominantly out-of-plane-(c-) oriented matrix. Monitoring the poling behavior of the respective domain populations, we show that the spontaneous polarization of these a-domains lack a predominant orientation in the pristine state, yet can be selectively aligned with an in-plane electric-field, leaving the c-domain population intact. Hence, domain reorientation of a ferroelastic c-to-a-type was directly excluded. Such independent electrical control of ferroelectric a-domains in a c-oriented BaTiO 3 film on silicon is a valuable platform for engineering multidirectional electrooptic functionality in integrated photonic devices.

References (36)

  1. N. Setter, D. Damjanovic, L. Eng, G. Fox, S. Gevorgian, S. Hong, A. Kingon, H. Kohlstedt, N. Y. Park, G. B. Stephenson, I. Stolitchnov, A. K. Taganstev, D. V. Taylor, T. Yamada, and S. Streiffer, J. Appl. Phys. 100, 051606 (2006).
  2. J. F. Scott, Science 315, 954 (2007).
  3. E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, IEEE J. Sel. Top. Quantum Electron. 6, 69 (2000).
  4. A. Politi, J. C. Matthews, M. G. Thompson, and J. L. O'Brien, IEEE J. Sel. Top. Quantum Electron. 15, 1673 (2009).
  5. C. Xiong, W. H. Pernice, J. H. Ngai, J. W. Reiner, D. Kumah, F. J. Walker, C. H. Ahn, and H. X. Tang, Nano Lett. 14, 1419 (2014).
  6. S. Abel, F. Eltes, J. E. Ortmann, A. Messner, P. Castera, T. Wagner, D. Urbonas, A. Rosa, A. M. Gutierrez, D. Tulli, et al., Nat. Mater. 18, 42 (2019).
  7. S. Abel, T. Stöferle, C. Marchiori, C. Rossel, M. D. Rossell, R. Erni, D. Caimi, M. Sousa, A. Chelnokov, B. J. Offrein, and J. Fompeyrine, Nat. Commun. 4, 1671 (2013).
  8. F. Eltes, C. Mai, D. Caimi, M. Kroh, Y. Popoff, G. Winzer, D. Petousi, S. Lischke, J. E. Ortmann, L. Czornomaz, L. Zimmermann, J. Fompeyrine, and S. Abel, J. Light. Technol. 37, 1456 (2019).
  9. J. Wang, F. Sciarrino, A. Laing, and M. G. Thompson, Nat. Photonics (2019), 10.1038/s41566-019-0532-1.
  10. J. Lyu, I. Fina, R. Solanas, J. Fontcuberta, and F. Sánchez, Sci. Rep. 8, 495 (2018).
  11. M. Scigaj, C. H. Chao, J. Gázquez, I. Fina, R. Moalla, G. Saint-Girons, M. F. Chisholm, G. Herranz, J. Fontcuberta, R. Bachelet, and F. Sánchez, Appl. Phys. Lett. 109, 122903 (2016).
  12. M. Scigaj, N. Dix, J. Gázquez, M. Varela, I. Fina, N. Domingo, G. Herranz, V. Skumryev, J. Fontcuberta, and F. Sánchez, Sci. Rep. 6, 31870 (2016).
  13. Y. L. Li and L. Q. Chen, Appl. Phys. Lett. 88, 072905 (2006).
  14. K. J. Kormondy, Y. Popoff, M. Sousa, F. Eltes, D. Caimi, M. D. Rossell, M. Fiebig, P. Hoff- mann, C. Marchiori, M. Reinke, et al., Nanotechnology 28, 075706 (2017).
  15. C. Dubourdieu, J. Bruley, T. M. Arruda, A. Posadas, J. Jordan-Sweet, M. M. Frank, E. Cartier, D. J. Frank, S. V. Kalinin, A. A. Demkov, and V. Narayanan, Nat. Nanotechnol. 8, 748 (2013).
  16. Z. Li, X. Guo, H.-B. Lu, Z. Zhang, D. Song, S. Cheng, M. Bosman, J. Zhu, Z. Dong, and W. Zhu, Adv. Mater. 26, 7185 (2014).
  17. R. Guo, Z. Wang, S. Zeng, K. Han, L. Huang, D. G. Schlom, T. Venkatesan, Ariando, and J. Chen, Sci. Rep. 5, 12576 (2015).
  18. S. M. Yang, A. N. Morozovska, R. Kumar, E. A. Eliseev, Y. Cao, L. Mazet, N. Balke, S. Jesse, R. K. Vasudevan, C. Dubourdieu, and S. V. Kalinin, Nat. Phys. 13, 812 (2017).
  19. M. Fiebig, V. V. Pavlov, and R. V. Pisarev, J. Opt. Soc. Am. B 22, 96 (2005).
  20. S. A. Denev, T. T. A. Lummen, E. Barnes, A. Kumar, and V. Gopalan, J. Am. Ceram. Soc. 94, 2699 (2011).
  21. G. De Luca, M. D. Rossell, J. Schaab, N. Viart, M. Fiebig, and M. Trassin, Adv. Mater. 29, 1605145 (2017).
  22. G. De Luca, N. Strkalj, S. Manz, C. Bouillet, M. Fiebig, and M. Trassin, Nat. Commun. 8, 1419 (2017).
  23. N. Strkalj, G. De Luca, M. Campanini, S. Pal, J. Schaab, C. Gattinoni, N. A. Spaldin, M. D. Rossell, M. Fiebig, and M. Trassin, Phys. Rev. Lett. 123, 147601 (2019).
  24. J. Nordlander, M. Campanini, M. D. Rossell, R. P. Erni, Q. N. Meier, A. Cano, N. A. Spaldin, M. Fiebig, and M. Trassin, Nat. Commun. 10, 5591 (2019).
  25. J. Nordlander, G. De Luca, N. Strkalj, M. Fiebig, and M. Trassin, Appl. Sci. 8, 570 (2018).
  26. G. De Luca, P. Schoenherr, J. Mendil, D. Meier, M. Fiebig, and M. Trassin, Phys. Rev. Appl. 10, 054030 (2018).
  27. N. Strkalj, E. Gradauskaite, J. Nordlander, and M. Trassin, Materials 12, 3108 (2019).
  28. R. R. Birss, Symmetry and magnetism, Vol. 863 (North-Holland Pub. Co., 1964).
  29. H. Yokota, J. Kaneshiro, and Y. Uesu, Phys. Res. Int. 2012, 704634 (2012).
  30. Y. Shen, The principles of nonlinear optics, Wiley classics library (Wiley-Interscience, 2003).
  31. T. H. E. Lahtinen, K. J. A. Franke, and S. van Dijken, Sci. Rep. 2, 258 (2012).
  32. A. I. Khan, X. Marti, C. Serrao, R. Ramesh, and S. Salahuddin, Nano Lett. 15, 2229 (2015).
  33. P. Gao, J. Britson, C. T. Nelson, J. R. Jokisaari, C. Duan, M. Trassin, S.-H. Baek, H. Guo, L. Li, Y. Wang, Y.-H. Chu, A. M. Minor, C.-B. Eom, R. Ramesh, L.-Q. Chen, and X. Pan, Nat. Commun. 5, 3801 (2014).
  34. Our simulations, using bulk BTO values for χ (2) , indicate relative SHG contributions a 1 : a 2 : c = 0 : 0 : 1 before poling, and a 1 : a 2 : c = 0.255 : 0.255 : 1 after poling.
  35. The estimated volume fraction of a-domains is relative to the total c-SHG yield. The pres- ence of c-domains of either orientation would reduce the c-SHG yield because of destructive interference between SHG contributions from P up and P down .
  36. B.-K. Lai, I. Ponomareva, I. A. Kornev, L. Bellaiche, and G. J. Salamo, Phys. Rev. B 75, 085412 (2007).