Academia.eduAcademia.edu

Outline

A Hundred Attacks in Distributed Systems

2022, HAL (Le Centre pour la Communication Scientifique Directe)

Abstract

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

References (126)

  1. Chapter 4 -web-based mail issues. In E-Mail Virus Protection Handbook, Syngress, Ed. Syngress, Burlington, 2000, pp. 119-145.
  2. Chapter 3 -understanding threats. In Host Integrity Monitoring Using Osiris and Samhain, B. Wotring and B. Potter, Eds. Syngress, Burlington, 2005, pp. 79-100.
  3. Abdullah, N., Hakansson, A., and Moradian, E. Blockchain based approach to enhance big data authentication in distributed environment. In 2017 Ninth International Conference on Ubiquitous and Future Networks (ICUFN) (2017), pp. 887-892.
  4. Adams, C. Dictionary Attack. Springer US, Boston, MA, 2011, pp. 332-332.
  5. Aggarwal, S., and Kumar, N. Chapter twenty -attacks on blockchain. In The Blockchain Technology for Secure and Smart Applications across Industry Verticals, S. Aggarwal, N. Kumar, and P. Raj, Eds., vol. 121 of Advances in Computers. Elsevier, 2021, pp. 399-410.
  6. Ahmed, M., and Pathan, A.-S. K. False data injection attack (fdia): an overview and new metrics for fair evaluation of its countermeasure. Complex Adaptive Systems Modeling (April 2020).
  7. Andress, J. The Basics of Information Security: Understanding the Fundamentals of InfoSec in Theory and Practice, 2nd ed. Syngress Publishing, 2014.
  8. Andrew, T. S., and Steen, M. V. Distributed Systems: Principles and Paradigm., 2nd ed. Upper Saddle River, NJ, USA: Pearson Higher Education, 2007.
  9. Andrychowicz, M., Dziembowski, S., Malinowski, D., and Mazurek, L. Secure multiparty computations on bitcoin. In 2014 IEEE Symposium on Security and Privacy (2014), pp. 443-458.
  10. Andrychowicz, M., Dziembowski, S., Malinowski, D., and Łukasz Mazurek. On the malleability of bitcoin transactions. Financial Cryptography and Data Securityg (2015), 1--18.
  11. Apostolaki, M., Marti, G., Müller, J., and Vanbever, L. Sabre: Protecting bitcoin against routing attacks.
  12. Apostolaki, M., Zohar, A., and Vanbever., L. Hijacking bitcoin: Routing attacks on cryptocurrencies. IEEE Symposium on Security and Privacy (2017), 375-392.
  13. Atzei, N., Bartoletti, M., , and Cimoli, T. A survey of attacks on ethereum smart contracts sok. Springer-Verlag New York, Inc. New York, NY, USA (2017).
  14. Azouvi, S., Danezis, G., and Nikolaenko, V. Winkle: Foiling long-range attacks in proof-of-stake systems. pp. 189-201.
  15. Bahack, L. Theoretical bitcoin attacks with less than half of the computational power. arXiv:1312.7013 (December 2013).
  16. Begum, A., Tareq, A. H., Sultana, M., Sohel, M. K., Rahman, T., and Sarwar, A. H. Blockchain attacks, analysis and a model to solve double spending attack. International Journal of Machine Learning and Computing 10, 2 (February 2020), 352--357.
  17. Biryukov, A., and Pustogarov, I. Bitcoin over tor is not a good idea., 02 2015.
  18. Boneh, D., and Naor, M. Timed commitments. In Advances in Cryptology -CRYPTO 2000, 20th Annual International Cryptology Conference, Santa Barbara, California, USA, August 20-24, 2000, Proceedings (2000), vol. 1880 of Lecture Notes in Computer Science, Springer, pp. 236-254.
  19. Bonneau, J. Why buy when you can rent? bribery attacks on bitcoin-style consensus. In Financial Cryptography and Data Security -International Workshops, FC 2016, BITCOIN, VOTING, and WAHC, Revised Selected Papers (2016), K. Rohloff, J. Clark, S. Meiklejohn, D. Wallach, M. Brenner, and P. Ryan, Eds., Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), Springer Verlag, pp. 19-26. International Workshops on Financial Cryptography and Data Security, FC 2016 and 3rd Workshop on Bitcoin and Blockchain Research, BITCOIN 2016, 1st Workshop on Advances in Secure Electronic Voting Schemes, VOTING 2016, and 4th Workshop on Encrypted Computing and Applied Homomorphic Cryptography, WAHC 2016 ; Conference date: 26-02-2016 Through 26-02-2016.
  20. Buford, J. F., Yu, H., and Lua, E. K. P2P Networking and Applications. Morgan Kaufmann, Boston, 2009.
  21. Buterin, V., and Griffith, V. Casper the friendly finality gadget.
  22. Cai, Y., and Zhu, D. Fraud detections for online businesses: a perspective from blockchain technology. Financial Innovation 2, 20 (2016), 1-10.
  23. cer, O. B., and Kupcu., A. Fortis: Selfish mining mitigation by (for)geable (ti)me(s)tamps.
  24. Chalaemwongwan, N., and Kurutach, W. A practical national digital id framework on blockchain (nidbc). In 2018 15th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON) (2018), pp. 497-500.
  25. Chandrashekhar, R., Mardithaya, M., Thilagam, S., and Saha, D. Sql injection attack mechanisms and prevention techniques. In Advanced Computing, Networking and Security (Berlin, Heidelberg, 2012), P. S. Thilagam, A. R. Pais, K. Chandrasekaran, and N. Balakrishnan, Eds., Springer Berlin Heidelberg, pp. 524-533.
  26. Chen, J., Xia, X., Lo, D., and Grundy, J. Why do smart contracts self-destruct? investigating the selfdestruct function on ethereum., 2021.
  27. Chen, J., Xia, X., Lo, D., and Grundy, J. Why do smart contracts self-destruct? investigating the selfdestruct function on ethereum. ACM Trans. Softw. Eng. Methodol. 31, 2 (December 2021).
  28. Chohan, U. W., and Chohan, U. W. The double spending problem and cryptocurrencies.
  29. Conti, M., E, S. K., Lal, C., and Ruj, S. A survey on security and privacy issues of bitcoin. CoRR abs/1706.00916 (2017).
  30. Coulouris, G. F., Dollimoreand, J., and Kindberg, T. Distributed Systems-Concepts and Design, 4th ed. London, England: Addison, 2005.
  31. Courtois, N. T. Double-spending fast payments in bitcoin.
  32. Crosby, M., Pattanayak, P., Verma, S., and Kalyanaraman, V. Applied innovation review. Applied Innovation Review 2 (2016), 5-20.
  33. Daian, P., Pass, R., and Shi, E. Snow white: Robustly reconfigurable consensus and applications to provably secure proof of stake. In Financial Cryptography (2019).
  34. Dasgupta, D., Shrein, J., and Gupta, K. D. A survey of blockchain from security perspective. Journal of Banking and Financial Technology 3 (January 2019).
  35. Deirmentzoglou, E., Papakyriakopoulos, G., and Patsakis, C. A survey on long-range attacks for proof of stake protocols. IEEE Access 7 (2019), 28712-28725.
  36. Dell'Amico, M., Michiardi, P., and Roudier, Y. Limitations of the kerberos authentication system. SIGCOMM Comput Commun Rev 20, 5 (10 1990), 119--132.
  37. Dey, S. Securing majority-attack in blockchain using machine learning and algorithmic game theory: A proof of work.
  38. Ding, X., Zhang, L., Wan, Z., and Gu, M. A brief survey on de-anonymization attacks in online social networks. In 2010 International Conference on Computational Aspects of Social Networks (2010), pp. 611-615.
  39. Ebrahimpour, G., and Haghighi, M. S. Analysis of bitcoin vulnerability to bribery attacks launched through large transactions. CoRR abs/2105.07501 (2021).
  40. Ebrahimpour, G., and Haghighi, M. S. Analysis of bitcoin vulnerability to bribery attacks launched through large transactions, 2021.
  41. Eskandari, S., Moosavi, M., and Clark, J. Sok: Transparent dishonesty: Front-running attacks on blockchain. pp. 170-189.
  42. Fedotov, I., and Khritankov, A. Statistical model checking of common attack scenarios on blockchain. Electronic Proceedings in Theoretical Computer Science 342 (September 2021), 65--77.
  43. Ferguson, N., and Schneier, B. Practical cryptography. New York : Wiley, ©2003., 2003.
  44. Ferrag, M. A., Derdour, M., Mukherjee, M., Derhab, A., and Janicke, L. M. H. Blockchain technologies for the internet of things: Research issues and challenges.
  45. Frankenfield, J. Paper wallet., August 2011.
  46. Fu, X., Wang, H., and Shi, P. A survey of blockchain consensus algorithms: mechanism, design and applications. Sci. China Inf. Sci. 64 (2021).
  47. Gambs, S., Killijian, M.-O., and Núñez del Prado Cortez, M. De-anonymization attack on geolocated data. Journal of Computer and System Sciences 80, 8 (2014), 1597-1614. Special Issue on Theory and Applications in Parallel and Distributed Computing Systems.
  48. Garba, A., Guan, Z., Li, A., and Chen, Z. Analysis of man-in-the-middle of attack on bitcoin address. In ICETE (2018).
  49. Gazi, P., Kiayias, A., and Russell, A. Stake-bleeding attacks on proof-of-stake blockchains. pp. 85-92.
  50. Gervais, A., Ritzdorf, H., Karame, G. O., and Capkun, S. Tampering with the delivery of blocks and transactions in bitcoin. CCS '15, Association for Computing Machinery, pp. 692--705.
  51. Guggenberger, T., Schlatt, V., Schmid, J., and Urbach, N. A structured overview of attacks on blockchain systems. Twenty-fifth Pacific Asia Conference on Information System (2021).
  52. Gupta, B., and Sheng, Q. Machine Learning for Computer and Cyber Security: Principle, Algorithms, and Practices. Cyber Ecosystem and Security. CRC Press, 2019.
  53. Han, R., Yu, J., Lin, H., Chen, S., and Esteves-Veríssimo, P. On the security and performance of blockchain sharding. Cryptology ePrint Archive, Report 2021/1276, 2021. https://ia.cr/2021/1276.
  54. Harinath, D., Satyanarayana, P., and Murthy, M. V. R. A review on security issues and attacks in distributed systems. 1-9.
  55. He, N., Zhang, R., Wang, H., Wu, L., Luo, X., Guo, Y., Yu, T., and and, X. J. Eosafe: Security analysis of eosio smart contracts. 30th USENIX Security Symposium (2021), 1271-1288.
  56. Heilman, E., Kendler, A., Zohar, A., and Goldberg., S. Eclipse attacks on bitcoin's peer-to-peer network. 24th USENIX conference Security Symposium (08 2015), 129--144.
  57. Homoliak, I., Venugopalan, S., Hum, Q., Reijsbergen, D., Schumi, R., and Szalachowski, P. The security reference architecture for blockchains: Towards a standardized model for studying vulnerabilities, threats, and defenses.
  58. Homoliak, I., Venugopalan, S., Hum, Q., and Szalachowski., P. A security reference architecture for blockchains.
  59. Iuon-Chang Lin, T.-C. L. A survey of blockchain security issues and challenges. International Journal of Network Security, 19, 5 (2017), 653-659.
  60. Joshi, J., and Mathew, R. A survey on attacks of bitcoin. In Proceeding of the International Conference on Computer Networks, Big Data and IoT (ICCBI -2018). (Cham, 2020), A. Pandian, T. Senjyu, S. M. S. Islam, and H. Wang, Eds., Springer International Publishing, pp. 953-959.
  61. Karame, G. O., Androulaki, E., and Capkun, S. Double-spending fast payments in bitcoin. In Proceedings of the 2012 ACM Conference on Computer and Communications Security (New York, NY, USA, 2012), CCS '12, Association for Computing Machinery, pp. 906--917.
  62. Kausar, F., Senan, F. M., Asif, H. M., and Raahemifar, K. 6g technology and taxonomy of attacks on blockchain technology. Alexandria Engineering Journal (2021).
  63. Khana, K. M., Arshadb, J., and Khanc, M. M. Simulation of transaction malleability attack for blockchain-based e-voting. Preprint submitted to Computers & Electrical Engineering (November 2019).
  64. Kiayias, A., and Panagiotakos, G. On trees, chains and fast transactions in the blockchain.
  65. Kokoris-Kogias, E., Jovanovic, P., Gasser, L., Gailly, N., Syta, E., and Ford, B. Omniledger: A secure, scale-out, decentralized ledger via sharding. In 2018 IEEE Symposium on Security and Privacy (SP) (2018), pp. 583-598.
  66. Kraus, R., Barber, B., Borkin, M., and Alpern, N. J. Chapter 2 -active directory -escalation of privilege. In Seven Deadliest Microsoft Attacks, R. Kraus, B. Barber, M. Borkin, and N. J. Alpern, Eds. Syngress, Boston, 2010, pp. 25-48.
  67. Kwon, Y., Kim, D., Son, Y., Vasserman, E., and Kim, Y. Be selfish and avoid dilemmas: Fork after withholding (faw) attacks on bitcoin. CCS '17: Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security (October 2017), 195--209.
  68. Lepinski, M., and Sriram, K. Bgpsec protocol specification. RFC 8205 (2017), 1-45.
  69. Li, X., Zhao, M., Zeng, M., Mumtaz, S., Menon, V. G., Ding, Z., and Dobre, O. A. Hardware impaired ambient backscatter noma systems: Reliability and security. IEEE Trans. Commun. (2021), 2723-2736.
  70. Lia, X., Jianga, P., Chenb, T., and Wenc, X. L. Q. A survey on the security of blockchain systems.
  71. Lindqvist, U., and Jonsson, E. How to systematically classify computer security intrusions. In Proceedings. 1997 IEEE Symposium on Security and Privacy (Cat. No.97CB36097) (1997), pp. 154-163.
  72. Liu, C., Liu, H., Cao, Z., Chen, Z., Chen, B., and Roscoe, B. Reguard: Finding reentrancy bugs in smart contracts. In 2018 IEEE/ACM 40th International Conference on Software Engineering: Companion (ICSE-Companion) (2018), pp. 65-68.
  73. Luu, L., Narayanan, V., Zheng, C., Baweja, K., Gilbert, S., and Saxena, P. A secure sharding protocol for open blockchains. CCS '16, Association for Computing Machinery, p. 17-30.
  74. McCorry, P., Shahandashti, S. F., and Hao, F. Refund attacks on bitcoin's payment protocol. In Financial Cryptography and Data Security (Berlin, Heidelberg, 2017), J. Grossklags and B. Preneel, Eds., Springer Berlin Heidelberg, pp. 581-599.
  75. Miller, A., Kosba, A., Katz, J., and Shi, E. Nonoutsourceable scratch-off puzzles to discourage bitcoin mining coalitions. In Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security (New York, NY, USA, 2015), CCS '15, Association for Computing Machinery, p. 680-691.
  76. Miller, A. K., Litton, J., Pachulski, A., Gupta, N., Levin, D., Spring, N., and Bhattacharjee, B. Discovering bitcoin ' s public topology and influential nodes.
  77. Min, T., and Cai., W. A security case study for blockchain games .
  78. Moubarak, J., Filiol, E., and Chamoun, M. On blockchain security and relevant attacks. In 2018 IEEE Middle East and North Africa Communications Conference (MENACOMM). (2018), pp. 1-6.
  79. Nakamoto., S. Bitcoin: A peer-to-peer electronic cash system.
  80. Nakayama, K., Moriyama, Y., and Oshima, C. An algorithm that prevents spam attacks using blockchain. International Journal of Advanced Computer Science and Applications 9 (01 2018).
  81. Narayanan, A., Bonneau, J., Felten, E., Miller, A., and Goldfeder, S. Bitcoin and Cryptocurrency Technologies: A Comprehensive Introduction. Princeton University Press, USA, 2016.
  82. Oppliger, R. Certification authorities under attack: A plea for certificate legitimation. IEEE Internet Computing 18, 01 (January 2014), 40-47.
  83. Peng, W., Li, F., Zou, X., and Wu, J. A two-stage deanonymization attack against anonymized social networks. IEEE Transactions on Computers 63, 2 (2014), 290-303.
  84. Ping-Chen, X. Sql injection attack and guard technical research. Procedia Engineering 15 (2011), 4131-4135. CEIS 2011.
  85. Qu, Z., Dong, Y., Qu, N., Li, H., Cui, M., Bo, X., Wu, Y., and Mugemanyi, S. False data injection attack detection in power systems based on cyber-physical attack genes. Frontiers in Energy Research 9 (2021), 57.
  86. Rahman, M. A., and Mohsenian-Rad, H. False data injection attacks with incomplete information against smart power grids. In IEEE Global Communications Conference (GLOBECOM) (2012), pp. 3153-3158.
  87. Ramos, S., Pianese, F., Leach, T., and Oliveras, E. A great disturbance in the crypto: Understanding cryptocurrency returns under attacks. Blockchain: Research and Applications (2021), 100021.
  88. Rathod, N., and Motwani, P. D. Security threats on blockchain and its countermeasures. IRJET Journal 5 (November 2018), 1637-1642.
  89. Ravindra, V., and Grama, A. De-anonymization attacks on neuroimaging datasets. In Proceedings of the 2021 International Conference on Management of Data (New York, NY, USA, 2021), SIGMOD/PODS '21, Association for Computing Machinery, pp. 2394--2398.
  90. Rosenfeld, M. Analysis of hashrate-based double-spending.
  91. Saad, M., Kim, J., Nyang, D., and Mohaisen, D. Contra-*: Mechanisms for countering spam attacks on blockchain memory pools, 05 2020.
  92. Saad, M., Njilla, L., Kamhoua, C., and Mohaisen, A. Countering selfish mining in blockchains.
  93. Saad, M., Spaulding, J., Njilla, L., Kamhoua, C., Shetty, S., Nyang, D., and Mohaisen, D. Exploring the attack surface of blockchain: A comprehensive survey. IEEE Communications Surveys Tutorials 22, 3 (2020), 1977-2008.
  94. Samreen, N. F., and Alalf, M. H. Smartscan: An approach to detect denial of service vulnerability in ethereum smart contracts.
  95. Samreen, N. F., and Alalfi, M. H. Reentrancy vulnerability identification in ethereum smart contracts. In 2020 IEEE International Workshop on Blockchain Oriented Software Engineering (IWBOSE) (2020), IEEE, pp. 22-29.
  96. Samreen, N. F., and Alalfi, M. H. A survey of security vulnerabilities in ethereum smart contracts. ArXiv abs/2105.06974 (2021).
  97. Sayeed, S., and Marco-Gisbert, H. Assessing blockchain consensus and security mechanisms against the 51 Applied Sciences 9, 9 (2019).
  98. Schrijvers, O., Bonneau, J., Boneh, D., and Roughgarden, T. Incentive compatibility of bitcoin mining pool reward functions. pp. 477-498.
  99. Shi, H., Wang, S., Hu, Q., Cheng, X., Zhang, J., and Yu, J. Fee-free pooled mining for countering pool-hopping attack in blockchain. IEEE Transactions on Dependable and Secure Computing 18, 04 (July 2021), 1580-1590.
  100. Singh, S., Hosen, A., and Yoon, B. Blockchain security attacks, challenges, and solutions for the future distributed iot network. IEEE Access (2021), 13938-13959.
  101. Singh, S. K., Salim, M. M., Cho, M., Cha, J., Pan, Y., and Park, J. H. Smart contract-based pool hopping attack prevention for blockchain networks. Symmetry 11, 7 (2019).
  102. Son, S., and Shmatikov, V. The hitchhiker's guide to dns cache poisoning. In SecureComm (2010).
  103. Sonnino, A., Bano, S., Al-Bassam, M., and Danezis, G. Replay attacks and defenses against cross-shard consensus in sharded distributed ledgers. In 2020 IEEE European Symposium on Security and Privacy (EuroS P) (2020), pp. 294-308.
  104. Stevens, M., Bursztein, E., Karpman, P., Albertini, A., and Markov, Y. The first collision for full sha-1. In CRYPTO (2017).
  105. Sun, H., Ruan, N., and Su, C. How to model the bribery attack: A practical quantification method in blockchain. In Computer Security -ESORICS 2020 (Cham, 2020), L. Chen, N. Li, K. Liang, and S. Schneider, Eds., Springer International Publishing, pp. 569-589.
  106. Suri, N. Distributed systems security knowledge area issue 1 . 0.
  107. Syta, E., Jovanovic, P., Kogias, E. K., Gailly, N., Gasser, L., Khoffi, I., Fischer, M. J., and Ford, B. Scalable bias-resistant distributed randomness. In 2017 IEEE Symposium on Security and Privacy (SP) (2017), pp. 444-460.
  108. Szalachowski, P. Towards more reliable bitcoin timestamps. ArXiv abs/1803.09028 (2018).
  109. Szalachowski, P., Reijsbergen, D., Homoliak, I., and Sun, S. StrongChain: Transparent and collaborative Proof-of-Work consensus. In 28th USENIX Security Symposium (USENIX Security 19) (Santa Clara, CA, Aug. 2019), USENIX Association, pp. 819-836.
  110. Torres, C., Schütte, J., and State, R. Osiris: Hunting for integer bugs in ethereum smart contracts, 12 2018.
  111. Tosh, D., Shetty, S., Liang, X., Kamhoua, C., Kwiat, K., and Njilla, L. Security implications of blockchain cloud with analysis of block withholding attack.
  112. Tsankov, P., Dan, A. M., Drachsler-Cohen, D., Gervais, A., Buenzli, F., and Vechev, M. T. Securify: Practical security analysis of smart contracts. Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security (2018).
  113. Vokerla, R. R., Shanmugam, B., Azam, S., Karim, A., Boer, F. D., Jonkman, M., and Faisal, F. An overview of blockchain applications and attacks. In 2019 International Conference on Vision Towards Emerging Trends in Communication and Networking (ViTECoN). (2019), pp. 1-6.
  114. Wang, D., and Wang., P. Offline dictionary attack on password authentication schemes using smart cards. 16th International Conference on Information Security 7807 (January 2015), 221--237.
  115. WANG, I., LI, M., andHONG LI, Y. H., XIAO, K., and WANG, C. A blockchain based privacy-preserving incentive mechanism in crowdsensing applications. IEEE Access 6 (April 2018), 17545-17556.
  116. Wang, Q., Ji, T., Guo, Y., Yu, L., Chen, X., and Li, P. Trafficchain: A blockchain-based secure and privacy-preserving traffic map. IEEE Access 8 (2020), 60598-60612.
  117. Wang, X., Chellappan, S., Boyer, P., and Xuan, D. On the effectiveness of secure overlay forwarding systems under intelligent distributed dos attacks. IEEE Transactions on Parallel and Distributed Systems 17 (July 2006), 619--632.
  118. Wang, X., Zha, X., Yu, G., and Ni., W. Attack and defence of ethereum remote apis.
  119. Wang, Y., and Li, G. Detect triangle attack on blockchain by trace analysis. In 2019 IEEE 19th International Conference on Software Quality, Reliability and Security Companion (QRS-C) (2019), pp. 316-321.
  120. Wondracek, G., Holz, T., Kirda, E., and Kruegel, C. A practical attack to de-anonymize social network users. In 2010 IEEE Symposium on Security and Privacy (2010), pp. 223-238.
  121. Wu, M., Miller, R. C., and Little, G. Web wallet: Preventing phishing attacks by revealing user intentions. In Proceedings of the Second Symposium on Usable Privacy and Security (New York, NY, USA, 2006), SOUPS '06, Association for Computing Machinery, pp. 102--113.
  122. York, D. Chapter 3 -eavesdropping and modification. In Seven Deadliest Unified Communications Attacks, D. York, Ed. Syngress, Boston, 2010, pp. 41-69.
  123. Zamani, E., He, Y., and Phillips, M. On the security risks of the blockchain. Journal of Computer Information Systems (2018).
  124. Zhang, P., Xiao, F., and Luo, X. A framework and dataset for bugs in ethereum smart contracts, 09 2020.
  125. Zhang, S., and Lee, J. H. Mitigations on sybil-based double-spend attacks in bitcoin. IEEE Consumer Electronics Magazine 10, 5 (September 2021), 23-28.
  126. Zhou, Z., Zhang, C., Wang, J., Gu, B., Mumtaz, S., Rodriguez, J., and Zhao, X. Energy-efficient resource allocation for energy harvesting-based cognitive machine-to-machine communications. IEEE Trans. Cognit. Commun. Networking (2019), 595-607.