Backlund transformation and L2-stability of NLS solitons
2010, arXiv (Cornell University)
https://doi.org/10.48550/ARXIV.1011.5922Abstract
Ground states of a L 2 -subcritical focusing nonlinear Schrödinger (NLS) equation are known to be orbitally stable in the energy class H 1 (R) thanks to its variational characterization. In this paper, we will show L 2 -stability of 1-solitons to a one-dimensional cubic NLS equation in the sense that for any initial data which are sufficiently close to a 1-soliton in L 2 (R), the solution remains in an L 2 -neighborhood of a nearby 1-soliton solution for all the time. The proof relies on the Bäcklund transformation between zero and soliton solutions of this integrable equation.
References (32)
- Ablowitz, M.J.; Prinari, B.; Trubach, A.D.; Discrete and Continuous Nonlinear Schrödinger Systems (Cambridge University Press, Cambridge, 2004).
- V. Buslaev, C. Sulem, On the stability of solitary waves for Nonlinear Schröodinger equations, Annales Institut Henri Poincaré, Analyse Nonlineaire 202 (2003), 419-475.
- T. Cazenave and P. L. Lions, Orbital stability of standing waves for some nonlinear Schrodinger equations, Comm. Math. Phys. 85 (1982), 549-561.
- T. Cazenave and F. Weissler, Rapidly decaying solutions of the nonlinear Schrödinger equation, Commun. Math. Phys. 147 (1992), 75-100.
- H. H. Chen, General derivation of Bäcklund transformations from inverse scattering problems", Phys. Rev. Lett. 33 (1974), 925-928.
- J. Colliander, M. Keel, G. Staffilani, H. Takaoka and T. Tao, Polynomial upper bounds for the orbital instability of the 1D cubic NLS below the energy norm, Discrete Contin. Dyn. Syst. 9 (2003), 31-54.
- S. Cuccagna, On asymptotic stability in energy space of ground states of NLS in 1D, J. Diff. Eqs. 245 (2008), 653-691.
- P. Deift and X. Zhou, Long-time asymptotics for solutions of the NLS equation with initial data in a weighted Sobolev space, Comm. Pure Applied Math. 56 (2003), 1029- 1077.
- H. Hasimoto, A soliton on a vortex filament, Journal of Fluid Mechanics 51 (1972), 477-485.
- N. Hayashi and P.I. Naumkin, Asymptotics for large time of solutions to the nonlinear Schrödinger and Hartree equations, Amer. J. Math. 120 (1998), 369-389.
- N. Hayashi and P.I. Naumkin, Asymptotic behavior for a quadratic nonlinear Schrödinger equation, Electron. J. Diff. Eqs. 2008 (2008), 1-38.
- N. Hayashi and M. Tsutsumi, L ∞ (R n )-decay of classical solutions for nonlinear Schrödinger equations, Proc. Royal Soc. Edinburgh 104 (1986), 309-327.
- P. Gérard and Z. Zhang, Orbital stability of traveling waves for the one-dimensional Gross-Pitaevskii equation, J. Math. Pures Appl. 91 (2009), 178-210.
- J. Ginibre and G. Velo, On the global Cauchy problem for some nonlinear Schrödinger equations, Ann. Inst. H. Poincaré Anal. Non Line'aire 1 (1984), 309-323.
- J. Ginibre and G. Velo, Scattering theory in the energy space for a class of nonlinear Schrödinger equations, J. Math. Pures Appl. 64 (1985), 363-401.
- M. Grillakis, J. Shatah, and W. Strauss, Stability theory of solitary waves in the presence of symmetry, J. Funct. Anal., 74 (1987), 160-197.
- T. Kapitula, On the stability of N-solitons in integrable systems, Nonlinearity 20 (2007), 879-907.
- T. Kato, On nonlinear Schrödinger equations, Ann. Inst. H. Poincare' Phys. Théor. 46 (1987), 113-129.
- K. Konno and M. Wadati, Simple derivation of Bäcklund transformation from Riccati form of inverse method, Prog. Theor. Phys. 53 (1975), 1652-1656.
- E.A. Kuznetsov, M.D. Spector, and G.E. Fal'kovich, On the stability of nonlinear waves in integrable models, Physica D 10 (1984), 379-386.
- F. Linares and G. Ponce, Introduction to Nonlinear Dispersive Equations (Springer, LLC, 2009).
- Y. Martel and F. Merle, Asymptotic stability of solitons of the subcritical gKdV equations revisited, Nonlinearity 18 (2005), 55-80.
- F. Merle, L. Vega, L 2 stability of solitons for KdV equation, Int. Math. Res. Not. (2003), 735-753.
- T. Mizumachi, Asymptotic stability of small solitary waves to 1D nonlinear Schrödinger equations with potential, J. Math. Kyoto Univ. 48 (2008), 471-497.
- T. Mizumachi and N. Tzvetkov, Stability of the line soliton of the KP-II equation under periodic transverse perturbations, http://arxiv.org/abs/1008.0812, preprint.
- T. Mizumachi and R. L. Pego, Asymptotic stability of Toda lattice solitons, Nonlinearity 21 (2008), 2099-2111.
- T. Ozawa, Long range scattering for nonlinear Schrödinger equations in one space di- mension, Commun. Math. Phys. 139 (1991), 479-493.
- Y. Tsutsumi, L 2 -solutions for nonlinear Schrödinger equations and nonlinear groups, Funkcial. Ekvac. 30 (1987), 115-125.
- M. I. Weinstein, Lyapunov stability of ground states of nonlinear dispersive evolution equations, Comm. Pure. Appl. Math., 39 (1986), 51-68.
- V.E. Zakharov and A.B. Shabat, Exact theory of two-dimensional self-focusing and one- dimensional self-modulation of waves in nonlinear media, Soviet Physics JETP 34 (1972), 62-69.
- V.E. Zakharov and A.B. Shabat, Interaction between solitons in a stable medium, Soviet Physics JETP 37 (1973), 823-828.
- V.E. Zakharov and L.A. Takhtadzhyan, Equivalence of the nonlinear Schrödinger equa- tion and the equation of a Heisenberg ferromagnet, Theor. Math. Phys. 38 (1979), 17-23.