Academia.eduAcademia.edu

Outline

Backlund transformation and L2-stability of NLS solitons

2010, arXiv (Cornell University)

https://doi.org/10.48550/ARXIV.1011.5922

Abstract

Ground states of a L 2 -subcritical focusing nonlinear Schrödinger (NLS) equation are known to be orbitally stable in the energy class H 1 (R) thanks to its variational characterization. In this paper, we will show L 2 -stability of 1-solitons to a one-dimensional cubic NLS equation in the sense that for any initial data which are sufficiently close to a 1-soliton in L 2 (R), the solution remains in an L 2 -neighborhood of a nearby 1-soliton solution for all the time. The proof relies on the Bäcklund transformation between zero and soliton solutions of this integrable equation.

References (32)

  1. Ablowitz, M.J.; Prinari, B.; Trubach, A.D.; Discrete and Continuous Nonlinear Schrödinger Systems (Cambridge University Press, Cambridge, 2004).
  2. V. Buslaev, C. Sulem, On the stability of solitary waves for Nonlinear Schröodinger equations, Annales Institut Henri Poincaré, Analyse Nonlineaire 202 (2003), 419-475.
  3. T. Cazenave and P. L. Lions, Orbital stability of standing waves for some nonlinear Schrodinger equations, Comm. Math. Phys. 85 (1982), 549-561.
  4. T. Cazenave and F. Weissler, Rapidly decaying solutions of the nonlinear Schrödinger equation, Commun. Math. Phys. 147 (1992), 75-100.
  5. H. H. Chen, General derivation of Bäcklund transformations from inverse scattering problems", Phys. Rev. Lett. 33 (1974), 925-928.
  6. J. Colliander, M. Keel, G. Staffilani, H. Takaoka and T. Tao, Polynomial upper bounds for the orbital instability of the 1D cubic NLS below the energy norm, Discrete Contin. Dyn. Syst. 9 (2003), 31-54.
  7. S. Cuccagna, On asymptotic stability in energy space of ground states of NLS in 1D, J. Diff. Eqs. 245 (2008), 653-691.
  8. P. Deift and X. Zhou, Long-time asymptotics for solutions of the NLS equation with initial data in a weighted Sobolev space, Comm. Pure Applied Math. 56 (2003), 1029- 1077.
  9. H. Hasimoto, A soliton on a vortex filament, Journal of Fluid Mechanics 51 (1972), 477-485.
  10. N. Hayashi and P.I. Naumkin, Asymptotics for large time of solutions to the nonlinear Schrödinger and Hartree equations, Amer. J. Math. 120 (1998), 369-389.
  11. N. Hayashi and P.I. Naumkin, Asymptotic behavior for a quadratic nonlinear Schrödinger equation, Electron. J. Diff. Eqs. 2008 (2008), 1-38.
  12. N. Hayashi and M. Tsutsumi, L ∞ (R n )-decay of classical solutions for nonlinear Schrödinger equations, Proc. Royal Soc. Edinburgh 104 (1986), 309-327.
  13. P. Gérard and Z. Zhang, Orbital stability of traveling waves for the one-dimensional Gross-Pitaevskii equation, J. Math. Pures Appl. 91 (2009), 178-210.
  14. J. Ginibre and G. Velo, On the global Cauchy problem for some nonlinear Schrödinger equations, Ann. Inst. H. Poincaré Anal. Non Line'aire 1 (1984), 309-323.
  15. J. Ginibre and G. Velo, Scattering theory in the energy space for a class of nonlinear Schrödinger equations, J. Math. Pures Appl. 64 (1985), 363-401.
  16. M. Grillakis, J. Shatah, and W. Strauss, Stability theory of solitary waves in the presence of symmetry, J. Funct. Anal., 74 (1987), 160-197.
  17. T. Kapitula, On the stability of N-solitons in integrable systems, Nonlinearity 20 (2007), 879-907.
  18. T. Kato, On nonlinear Schrödinger equations, Ann. Inst. H. Poincare' Phys. Théor. 46 (1987), 113-129.
  19. K. Konno and M. Wadati, Simple derivation of Bäcklund transformation from Riccati form of inverse method, Prog. Theor. Phys. 53 (1975), 1652-1656.
  20. E.A. Kuznetsov, M.D. Spector, and G.E. Fal'kovich, On the stability of nonlinear waves in integrable models, Physica D 10 (1984), 379-386.
  21. F. Linares and G. Ponce, Introduction to Nonlinear Dispersive Equations (Springer, LLC, 2009).
  22. Y. Martel and F. Merle, Asymptotic stability of solitons of the subcritical gKdV equations revisited, Nonlinearity 18 (2005), 55-80.
  23. F. Merle, L. Vega, L 2 stability of solitons for KdV equation, Int. Math. Res. Not. (2003), 735-753.
  24. T. Mizumachi, Asymptotic stability of small solitary waves to 1D nonlinear Schrödinger equations with potential, J. Math. Kyoto Univ. 48 (2008), 471-497.
  25. T. Mizumachi and N. Tzvetkov, Stability of the line soliton of the KP-II equation under periodic transverse perturbations, http://arxiv.org/abs/1008.0812, preprint.
  26. T. Mizumachi and R. L. Pego, Asymptotic stability of Toda lattice solitons, Nonlinearity 21 (2008), 2099-2111.
  27. T. Ozawa, Long range scattering for nonlinear Schrödinger equations in one space di- mension, Commun. Math. Phys. 139 (1991), 479-493.
  28. Y. Tsutsumi, L 2 -solutions for nonlinear Schrödinger equations and nonlinear groups, Funkcial. Ekvac. 30 (1987), 115-125.
  29. M. I. Weinstein, Lyapunov stability of ground states of nonlinear dispersive evolution equations, Comm. Pure. Appl. Math., 39 (1986), 51-68.
  30. V.E. Zakharov and A.B. Shabat, Exact theory of two-dimensional self-focusing and one- dimensional self-modulation of waves in nonlinear media, Soviet Physics JETP 34 (1972), 62-69.
  31. V.E. Zakharov and A.B. Shabat, Interaction between solitons in a stable medium, Soviet Physics JETP 37 (1973), 823-828.
  32. V.E. Zakharov and L.A. Takhtadzhyan, Equivalence of the nonlinear Schrödinger equa- tion and the equation of a Heisenberg ferromagnet, Theor. Math. Phys. 38 (1979), 17-23.