Academia.eduAcademia.edu

Outline

Computing the k densest subgraphs of a graph

2023, Information Processing Letters

https://doi.org/10.4230/LIPICS

Abstract

Computing cohesive subgraphs is a central problem in graph theory. While many formulations of cohesive subgraphs lead to NP-hard problems, finding a densest subgraph can be done in polynomialtime. As such, the densest subgraph model has emerged as the most popular notion of cohesiveness. Recently, the data mining community has started looking into the problem of computing k densest subgraphs in a given graph, rather than one. In this paper we consider a natural variant of the k densest subgraphs problem, where overlap between solution subgraphs is allowed with no constraint. We show that the problem is fixed-parameter tractable with respect to k, and admits a PTAS for constant k. Both these algorithms complement nicely the previously known O(n k ) algorithm for the problem. Theory of computation → Graph algorithms analysis; Mathematics of computing → Graph theory; Networks → Network algorithms Keywords and phrases Algorithm Design, Network Mining and Analysis, Densest Subgraph, Algorithmic Aspects of Networks.

References (32)

  1. Reid Andersen and Kumar Chellapilla. Finding dense subgraphs with size bounds. In Konstantin Avrachenkov, Debora Donato, and Nelly Litvak, editors, Algorithms and Models for the Web-Graph, 6th International Workshop, WAW 2009, Barcelona, Spain, February 12-13, 2009. Proceedings, volume 5427 of Lecture Notes in Computer Science, pages 25-37.
  2. Springer, 2009. doi:10.1007/978-3-540-95995-3\_3.
  3. Yuichi Asahiro, Refael Hassin, and Kazuo Iwama. Complexity of finding dense subgraphs. Discrete Applied Mathematics, 121(1-3):15-26, 2002. doi:10.1016/S0166-218X(01)00243-8.
  4. Yuichi Asahiro, Kazuo Iwama, Hisao Tamaki, and Takeshi Tokuyama. Greedily finding a dense subgraph. In Rolf G. Karlsson and Andrzej Lingas, editors, Algorithm Theory -SWAT '96, 5th Scandinavian Workshop on Algorithm Theory, Reykjavík, Iceland, July 3-5, 1996, Proceedings, volume 1097 of Lecture Notes in Computer Science, pages 136-148. Springer, 1996. doi:10.1007/3-540-61422-2\_127.
  5. Bahman Bahmani, Ravi Kumar, and Sergei Vassilvitskii. Densest subgraph in streaming and mapreduce. PVLDB, 5(5):454-465, 2012. doi:10.14778/2140436.2140442.
  6. Oana Denisa Balalau, Francesco Bonchi, T.-H. Hubert Chan, Francesco Gullo, and Mauro Sozio. Finding subgraphs with maximum total density and limited overlap. In Xueqi Cheng, Hang Li, Evgeniy Gabrilovich, and Jie Tang, editors, Proceedings of the Eighth ACM International Conference on Web Search and Data Mining, WSDM 2015, pages 379-388. ACM, 2015. doi:10.1145/2684822.2685298.
  7. Moses Charikar. Greedy approximation algorithms for finding dense components in a graph. In Klaus Jansen and Samir Khuller, editors, Approximation Algorithms for Combinatorial Optim- ization, Third International Workshop, APPROX 2000, Proceedings, volume 1913 of Lecture Notes in Computer Science, pages 84-95. Springer, 2000. doi:10.1007/3-540-44436-X.
  8. Riccardo Dondi, Mohammad Mehdi Hosseinzadeh, Giancarlo Mauri, and Italo Zoppis. Top-k overlapping densest subgraphs: approximation algorithms and computational complexity. J. Comb. Optim., 41(1):80-104, 2021. doi:10.1007/s10878-020-00664-3.
  9. Lata Dyaram and T. J. Kamalanabhan. Unearthed: The other side of group cohesiveness. Journal of Social Sciences, 10(3):185-190, 2005.
  10. Uriel Feige, Guy Kortsarz, and David Peleg. The dense k-subgraph problem. Algorithmica, 29(3):410-421, 2001. doi:10.1007/s004530010050. XX:9
  11. Eugene Fratkin, Brian T. Naughton, Douglas L. Brutlag, and Serafim Batzoglou. Motifcut: regulatory motifs finding with maximum density subgraphs. Bioinformatics, 22(14):156-157, 2006. doi:10.1093/bioinformatics/btl243.
  12. Esther Galbrun, Aristides Gionis, and Nikolaj Tatti. Top-k overlapping densest subgraphs. Data Min. Knowl. Discov., 30(5):1134-1165, 2016. doi:10.1007/s10618-016-0464-z.
  13. Giorgio Gallo, Michael D. Grigoriadis, and Robert Endre Tarjan. A fast parametric maximum flow algorithm and applications. SIAM Journal on Computing, 18(1):30-55, 1989. doi: 10.1137/0218003.
  14. Andrew V. Goldberg. Finding a maximum density subgraph. Technical report, Berkeley, CA, USA, 1984.
  15. Doron Goldstein and Michael Langberg. The dense k subgraph problem. CoRR, abs/0912.5327, 2009. arXiv:0912.5327.
  16. Richard M. Karp. Reducibility among combinatorial problems. In Raymond E. Miller and James W. Thatcher, editors, Proceedings of a symposium on the Complexity of Computer Computations, The IBM Research Symposia Series, pages 85-103. Plenum Press, New York, 1972.
  17. Yasushi Kawase and Atsushi Miyauchi. The densest subgraph problem with a convex/concave size function. Algorithmica, 80(12):3461-3480, 2018. doi:10.1007/s00453-017-0400-7.
  18. Samir Khuller and Barna Saha. On finding dense subgraphs. In Susanne Albers, Alberto Marchetti-Spaccamela, Yossi Matias, Sotiris E. Nikoletseas, and Wolfgang Thomas, editors, Automata, Languages and Programming, 36th International Colloquium, ICALP 2009, Rhodes, Greece, July 5-12, 2009, Proceedings, Part I, volume 5555 of Lecture Notes in Computer Science, pages 597-608. Springer, 2009. doi:10.1007/978-3-642-02927-1\_50.
  19. Christian Komusiewicz. Multivariate algorithmics for finding cohesive subnetworks. Algorithms, 9(1):21, 2016.
  20. Guy Kortsarz and David Peleg. Generating sparse 2-spanners. J. Algorithms, 17(2):222-236, 1994. doi:10.1006/jagm.1994.1032.
  21. Ravi Kumar, Prabhakar Raghavan, Sridhar Rajagopalan, and Andrew Tomkins. Trawling the web for emerging cyber-communities. Computer Networks, 31(11-16):1481-1493, 1999. doi:10.1016/S1389-1286(99)00040-7.
  22. Jure Leskovec, Kevin J. Lang, Anirban Dasgupta, and Michael W. Mahoney. Community structure in large networks: Natural cluster sizes and the absence of large well-defined clusters. Internet Mathematics, 6(1):29-123, 2009. doi:10.1080/15427951.2009.10129177.
  23. Pasin Manurangsi. Almost-polynomial ratio eth-hardness of approximating densest k-subgraph. In Hamed Hatami, Pierre McKenzie, and Valerie King, editors, Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2017, Montreal, QC, Canada, June 19-23, 2017, pages 954-961. ACM, 2017. doi:10.1145/3055399.3055412.
  24. Muhammad Anis Uddin Nasir, Aristides Gionis, Gianmarco De Francisci Morales, and Sarunas Girdzijauskas. Fully dynamic algorithm for top-k densest subgraphs. In Ee-Peng Lim, Marianne Winslett, Mark Sanderson, Ada Wai-Chee Fu, Jimeng Sun, J. Shane Culpepper, Eric Lo, Joyce C. Ho, Debora Donato, Rakesh Agrawal, Yu Zheng, Carlos Castillo, Aixin Sun, Vincent S. Tseng, and Chenliang Li, editors, Proceedings of the 2017 ACM on Conference on Information and Knowledge Management, CIKM 2017, pages 1817-1826. ACM, 2017. doi:10.1145/3132847.3132966.
  25. James B. Orlin. Max flows in o(nm) time, or better. In Dan Boneh, Tim Roughgarden, and Joan Feigenbaum, editors, Symposium on Theory of Computing Conference, STOC'13, Palo Alto, CA, USA, June 1-4, 2013, pages 765-774. ACM, 2013. URL: https://doi.org/10. 1145/2488608.2488705, doi:10.1145/2488608.2488705.
  26. Jean-Claude Picard and Maurice Queyranne. A network flow solution to some nonlinear 0-1 programming problems, with applications to graph theory. Networks, 12(2):141-159, 1982. URL: https://doi.org/10.1002/net.3230120206, doi:10.1002/net.3230120206. XX:10 Computing the k Densest Subgraphs of a Graph 26 Mauro Sozio and Aristides Gionis. The community-search problem and how to plan a successful cocktail party. In Bharat Rao, Balaji Krishnapuram, Andrew Tomkins, and Qiang Yang, editors, Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Washington, DC, USA, July 25-28, 2010, pages 939-948. ACM, 2010. doi:10.1145/1835804.1835923.
  27. Nikolaj Tatti. Density-friendly graph decomposition. ACM Trans. Knowl. Discov. Data, 13(5):54:1-54:29, 2019. doi:10.1145/3344210.
  28. Nikolaj Tatti and Aristides Gionis. Density-friendly graph decomposition. In Aldo Gangemi, Stefano Leonardi, and Alessandro Panconesi, editors, Proceedings of the 24th International Conference on World Wide Web, WWW 2015, Florence, Italy, May 18-22, 2015, pages 1089-1099. ACM, 2015. doi:10.1145/2736277.2741119.
  29. Charalampos E. Tsourakakis. The k-clique densest subgraph problem. In Aldo Gangemi, Stefano Leonardi, and Alessandro Panconesi, editors, Proceedings of the 24th International Conference on World Wide Web, WWW 2015, Florence, Italy, May 18-22, 2015, pages 1122-1132. ACM, 2015. doi:10.1145/2736277.2741098.
  30. Elena Valari, Maria Kontaki, and Apostolos N. Papadopoulos. Discovery of top-k dense subgraphs in dynamic graph collections. In Anastasia Ailamaki and Shawn Bowers, editors, Scientific and Statistical Database Management -24th International Conference, SSDBM 2012, Chania, Crete, Greece, June 25-27, 2012. Proceedings, volume 7338 of Lecture Notes in Computer Science, pages 213-230. Springer, 2012.
  31. Zhaonian Zou. Polynomial-time algorithm for finding densest subgraphs in uncertain graphs. In Proceedings of Internation Workshop on Mining and Learning with Graphs, 2013.
  32. David Zuckerman. Linear degree extractors and the inapproximability of max clique and chro- matic number. Theory of Computing, 3(1):103-128, 2007. doi:10.4086/toc.2007.v003a006.