Academia.eduAcademia.edu

Outline

A Neural Architecture for Person Ontology population

2020, ArXiv

Abstract

A person ontology comprising concepts, attributes and relationships of people has a number of applications in data protection, didentification, population of knowledge graphs for business intelligence and fraud prevention. While artificial neural networks have led to improvements in Entity Recognition, Entity Classification, and Relation Extraction, creating an ontology largely remains a manual process, because it requires a fixed set of semantic relations between concepts. In this work, we present a system for automatically populating a person ontology graph from unstructured data using neural models for Entity Classification and Relation Extraction. We introduce a new dataset for these tasks and discuss our results.

References (8)

  1. Abhishek, Anand, and Awekar 2017] Abhishek, A.; Anand, A.; and Awekar, A. 2017. Fine-grained entity type classifi- cation by jointly learning representations and label embed- dings. In Proceedings of the 15th Conference of the Euro- pean Chapter of the Association for Computational Linguis- tics: Volume 1, Long Papers. [Cer et al. 2018] Cer, D.; Yang, Y.; Kong, S.-y.; Hua, N.; Limtiaco, N.; John, R. S.; Constant, N.; Guajardo-Cespedes, M.; Yuan, S.; Tar, C.; et al. 2018. Universal sentence en- coder. arXiv preprint arXiv:1803.11175. [Chen et al. 2018] Chen, M.; Tian, Y.; Chen, X.; Xue, Z.; and Zaniolo, C. 2018. On2vec: Embedding-based relation pre- diction for ontology population. In Proceedings of the 2018 SIAM International Conference on Data Mining, 315-323. SIAM. [Chiticariu et al. 2010] Chiticariu, L.; Krishnamurthy, R.; Li, Y.; Raghavan, S.; Reiss, F. R.; and Vaithyanathan, S. 2010. Systemt: an algebraic approach to declarative information extraction. In Proceedings of the 48th Annual Meeting of the Association for Computational Linguistics. [Choi et al. 2018] Choi, E.; Levy, O.; Choi, Y.; and Zettle- moyer, L. 2018. Ultra-fine entity typing. arXiv preprint arXiv:1807.04905.
  2. Dasgupta et al. 2018] Dasgupta, R.; Ganesan, B.; Kannan, A.; Reinwald, B.; and Kumar, A. 2018. Fine grained classification of personal data entities. arXiv preprint arXiv:1811.09368. [Gillick et al. 2014] Gillick, D.; Lazic, N.; Ganchev, K.; Kirchner, J.; and Huynh, D. 2014. Context- dependent fine-grained entity type tagging. arXiv preprint arXiv:1412.1820.
  3. Hagberg, Swart, and S Chult 2008] Hagberg, A.; Swart, P.; and S Chult, D. 2008. Exploring network structure, dy- namics, and function using networkx. Technical report, Los Alamos National Lab.(LANL), Los Alamos, NM (United States).
  4. Ling and Weld 2012] Ling, X., and Weld, D. S. 2012. Fine- grained entity recognition. In AAAI. [Lu, Chen, and Zhang 2016] Lu, J.; Chen, J.; and Zhang, C. 2016. Helsinki Multi-Model Data Repository. http://udbms.cs.helsinki.fi/?dataset. [Murty et al. 2017] Murty, S.; Verga, P.; Vilnis, L.; and Mc- Callum, A. 2017. Finer grained entity typing with typenet. arXiv preprint arXiv:1711.05795. [Schlichtkrull et al. 2018] Schlichtkrull, M.; Kipf, T. N.; Bloem, P.; Van Den Berg, R.; Titov, I.; and Welling, M. 2018. Modeling relational data with graph convolutional networks. In European Semantic Web Conference, 593-607. Springer. [Shimaoka et al. 2017] Shimaoka, S.; Stenetorp, P.; Inui, K.; and Riedel, S. 2017. Neural architectures for fine-grained entity type classification. In Proceedings of the 15th Confer- ence of the European Chapter of the Association for Com- putational Linguistics: Volume 1, Long Papers. [Weischedel and Brunstein 2005] Weischedel, R., and Brun- stein, A. 2005. Bbn pronoun coreference and entity type corpus. Linguistic Data Consortium, Philadelphia. [Weischedel et al. 2013] Weischedel, R.; Palmer, M.; Mar- cus, M.; Hovy, E.; Pradhan, S.; Ramshaw, L.; Xue, N.; Taylor, A.; Kaufman, J.; Franchini, M.; et al. 2013. Ontonotes release 5.0 ldc2013t19. Linguistic Data Consor- tium, Philadelphia, PA. [Xu and Barbosa 2018] Xu, P., and Barbosa, D. 2018. Neural fine-grained entity type classification with hierarchy-aware loss. arXiv preprint arXiv:1803.03378.
  5. Yogatama, Gillick, and Lazic 2015] Yogatama, D.; Gillick, D.; and Lazic, N. 2015. Embedding methods for fine grained entity type classification. In Proceedings of the 53rd An- nual Meeting of the Association for Computational Linguis- tics and the 7th International Joint Conference on Natural Language Processing (Volume 2: Short Papers).
  6. You, Ying, and Leskovec 2019] You, J.; Ying, R.; and Leskovec, J. 2019. Position-aware graph neural networks. arXiv preprint arXiv:1906.04817.
  7. Zhang et al. 2017] Zhang, Y.; Zhong, V.; Chen, D.; Angeli, G.; and Manning, C. D. 2017. Position-aware attention and supervised data improve slot filling. In Proceedings of the 2017 Conference on Empirical Methods in Natural Lan- guage Processing, 35-45.
  8. Zhang, Qi, and Manning 2018] Zhang, Y.; Qi, P.; and Man- ning, C. D. 2018. Graph convolution over pruned depen- dency trees improves relation extraction. arXiv preprint arXiv:1809.10185.